
Efficient Convolutional Neural
Networks for Pixelwise Classification
on Heterogeneous Hardware Systems

Technical Report

Fabian Tschopp

September 11, 2015

Supervisors: Prof. Dr. Angelika Steger, Dr. Jan Funke

Department of Computer Science, ETH Zürich

ar
X

iv
:1

50
9.

03
37

1v
1

 [
cs

.C
V

]
 1

1
Se

p
20

15

Abstract

This work presents and analyzes three convolutional neural network (CNN)
models for efficient pixelwise classification of images. When using convolu-
tional neural networks to classify single pixels in patches of a whole image,
a lot of redundant computations are carried out when using sliding window
networks. This set of new architectures solve this issue by either removing
redundant computations or using fully convolutional architectures that inher-
ently predict many pixels at once.

The implementations of the three models are accessible through a new utility
on top of the Caffe library. The utility provides support for a wide range
of image input and output formats, pre-processing parameters and methods
to equalize the label histogram during training. The Caffe library has been
extended by new layers and a new backend for availability on a wider range
of hardware such as CPUs and GPUs through OpenCL.

On AMD GPUs, speedups of 54× (SK-Net), 437× (U-Net) and 320× (USK-
Net) have been observed, taking the SK equivalent SW (sliding window) net-
work as the baseline. The label throughput is up to one megapixel per second.

The analyzed neural networks have distinctive characteristics that apply dur-
ing training or processing, and not every data set is suitable to every architec-
ture. The quality of the predictions is assessed on two neural tissue data sets,
of which one is the ISBI 2012 challenge data set. Two different loss functions,
Malis loss and Softmax loss, were used during training.

The whole pipeline, consisting of models, interface and modified Caffe library,
is available as Open Source software under the working title Project Greentea.

i

Acknowledgements

University of Zurich, Institute of Neuroinformatics

Firstly I would like to express my gratitude to my supervisor Dr. Jan Funke
for his guidance, motivation and the opportunity to visit HHMI Janelia in
Ashburn, Virginia, USA.
I also thank my supervisor Prof. Dr. Angelika Steger for collaborating with
the Institute of Neuroinformatics, which made this research project possible.
I thank Stephan Gerhard and Julien Martel for interesting discussions about
neural networks and this technical report.

Howard Hughes Medical Institute, Janelia

Besides my advisors I would like to thank Dr. Srinivas Turaga and Dr. Stephan
Saalfeld for their collaboration at HHMI Janelia, which inspired me to extend
the scope of my research and gave me insight into the applications of neural
networks for image segmentation in connectomics. Besides this, Janelia has
the nicest campus of all research institutes that I have seen so far.

AMD (Advanced Micro Devices)

I would like to thank AMD and especially Roy Taylor, Greg Stoner and Bruno
Stefanizzi for the generous hardware sponsoring, which empowered a lot of
the development on the Caffe library and enabled me to use neural network
models beyond what is possible on regular hardware. I also thank Timmy Liu
for his assistance and development of clBLAS and Dr. Ing. Hervé Chevanne
for providing drivers and support for the AMD GPUs.
Being a fan of AMD hardware and using their devices for over ten years, it
was a pleasure for me to work together with AMD engineers and using their
newest hardware and software technology for research.

Family

Last but not the least, I would like to thank my family, my parents and my
sister, for supporting me during my Bachelor studies at ETH Zurich.

ii

Contents

Contents iii

1 Introduction 1
1.1 Convolutional Neural Networks . 1
1.2 Caffe Library . 2
1.3 Pixelwise Classification . 2
1.4 Existing Work . 4
1.5 New Contributions . 4
1.6 Terminology . 6

2 Datasets 7
2.1 DS1 - Segmented anisotropic ssTEM dataset of neural tissue 7
2.2 DS2 - ISBI 2012 dataset of neural tissue 9

3 Models 11
3.1 Introduction . 11
3.2 Sliding Window (SW-Net) . 12
3.3 SK-Net . 13

3.3.1 Converting SW Networks to SK 13
3.3.2 SK Network . 16

3.4 U-Net . 18
3.5 USK-Net . 20

4 Caffe Neural Tool 24
4.1 Functionality . 24
4.2 Preprocessing . 25
4.3 Histogram Equalization . 26

iii

Contents

5 Caffe Library 29
5.1 Introduction . 29
5.2 Modified Layers . 30

5.2.1 SK Layers . 30
5.2.2 N-Dimensional Layers . 30

5.3 New Layers . 31
5.3.1 Merge Crop . 31
5.3.2 Malis Loss . 31
5.3.3 Affinity . 34
5.3.4 Connected Components . 36

5.4 OpenCL Backend . 36
5.4.1 Implementation . 36
5.4.2 OpenCL Hybrid . 37

5.5 Convolution Methods . 38

6 Benchmarks 40
6.1 Introduction . 40
6.2 Hardware . 40
6.3 Software . 41
6.4 Device Memory . 42
6.5 Labeling Throughput . 45
6.6 Layer Performance Analysis . 47

6.6.1 SK-Net . 47
6.6.2 U-Net . 49
6.6.3 USK-Net . 51

6.7 NUMA Issues . 53
6.8 Alexnet . 55

7 Results 56
7.1 Introduction . 56
7.2 Analysis on DS1 . 56

7.2.1 Training . 56
7.2.2 Numerical . 57
7.2.3 Visual . 58

7.3 Analysis on DS2 . 61
7.3.1 Training . 61
7.3.2 Numerical . 62
7.3.3 Visual . 62

iv

Contents

8 Conclusion 66
8.1 Research Time Line . 66
8.2 Implications . 67
8.3 Difficulties Encountered . 67
8.4 Reproducibility of Results . 68
8.5 Outlook . 69

8.5.1 Device Abstracted Backend . 69
8.5.2 Improving Training Data . 69
8.5.3 Parameter Grid Search . 69
8.5.4 Testing of Volumetric Architectures 69
8.5.5 Improving Test Metrics . 70

8.6 Final Words . 70

A Network Architectures 72
A.1 SK-Net . 72
A.2 U-Net . 74
A.3 USK-Net . 80

v

Chapter 1

Introduction

1.1 Convolutional Neural Networks

Convolutional neural networks are forward-backward neural networks that are
mostly based on convolutions with machine learnable kernels, pooling operations
and element-wise non-linear activation functions. The networks can be employed
for various image classification and object recognition tasks. A prominent example
is the ImageNet / AlexNet [1] for object recognition. Recent networks [2] can have
very many, in this case over 20, layers and millions of learnable parameters.

This work is focused on classifying biomedical data, in particular neural tissue
electron microscopy images (see Chapter 2). The challenge with this kind of data
sets is that training data is more scarce than with data sets that can be generated
from everyday pictures such as handwritten letters or online collections of images.
Annotating ground truth for neural tissue images is a lot of manual work, as every
single pixel has to be labeled.

Consequently, improving training speeds is not a primary objective to optimize
for. The data that has to be processed with a trained model afterwards however
can easily reach terabyte-scale. It is therefore crucial to develop networks that
are as efficient as possible in the forwarding step. This work presents three such
efficient pixel classification networks.

When training, the classical mislabeling objectives such as Softmax or Cross-entropy
loss might not be the most useful for pixelwise classifications of biological images,
and using spatial context information to generate an error signal to train the neural
networks can perform better. Therefore, this research also considers different train-
ing methods including the Malis [3] criterion.

To relate the objectives of this technical report with the title, it needs to be dissected
into its components:

• Efficient Convolutional Neural Networks means the network models analyzed
and designed are as efficient as possible in getting the task done - in this
case, pixelwise classification of electron microscopy neural tissue images.

• Pixelwise Classification, as opposed to image classification, aims to propose a
label to each pixel in a given image. It can also be seen as many separate

1

1.2. Caffe Library

image classifications of small patches in a bigger image. This gives rise to
new optimization possibilities as the contexts for the predictions overlap
spatially.

• Heterogeneous Hardware Systems means the network models used should also
run as efficient as possible on a variety of compute devices. This objective
makes efficient neural networks more accessible to users and allows to use
existing hardware and clusters to get segmentation tasks with neural net-
works done.

1.2 Caffe Library

Caffe stands for Convolutional Architecture for Fast Feature Embedding [4]. It
is a state-of-the-art neural network library that has been heavily optimized for
the use with nVidias CUDA technology. In many cases, the library is therefore
already very efficient using certain GPUs. What was missing until now [5] is fast
CPU support (the current CPU backend is mostly single threaded) and support
for GPUs and accelerator devices from AMD and Intel. The library is still under
development and has a large community [6].

Network models and trained weights (usually called model zoo) can be shared
in Google’s prototxt (network and learning configurations) and protocol buffer
(trained weights and solver states) format.

The library is typically used on the command line with the Caffe binary or through
a python (Pycaffe) interface (see Figure 1.3). For more advanced and intrusive
interfaces, C++ interfaces can be programmed on top of the library.

All models, utilities and backend additions programmed for this project are based
on and around Caffe. The changes to the library are documented in Chapter 5.

1.3 Pixelwise Classification

Pixelwise classification means labeling each pixel in an image based on a local
context around the pixel. Figure 1.1 shows how this works with sliding window
networks that outputs a single pixel per input tile of size v + w = 101 + 1 = 102.

While minibatch processing can output many pixels at once, this is still inefficient
(see Sections 3.2 and 6.5). The work by Hongsheng Li et al. [7] allows to make
existing SW networks more efficient while giving identical prediction results (see
Section 3.3.1).
Alternatively, fully convolutional models (U and partially also USK) directly out-
put a bigger patch, as depicted in Figure 1.2. This method of training and pro-
cessing is called patch-based (n = 1, w > 1), as opposed to minibatch-based
(n > 1, w = 1). A combination of both (n > 1, w > 1) is possible but only useful
when the images in the data set can not be tiled with large w � 1 (see Section
6.4).

Minibatches can still have advantages during training (see Section 4.3) because
every element in the minibatch can be picked independently. During processing,
networks that output large patches are always performing better.

2

1.3. Pixelwise Classification

In all cases, the images have to be extended (padded) by mirroring on the borders
by v

2 pixels on each side if every pixel of the image is to be labeled.

(a) Input image to classify with border
mirroring to extend the image. The green

rectangle is a 4 by 1 pixel area to be labeled.

(b) Generated minibatch input of size n = 4
and with a context of 102 by 102 pixels. The
output classification for this input will be 4

by 1 pixels. The individual images in the
minibatch are only shifted by one pixel each.

The data overlaps and is copied into the
network redundantly.

Figure 1.1: Pixelwise image classification based on sliding window architectures.
(Raw image source: ssTEM [8], [9]). The surrounding context (blue rectangles) is

what determines the labeling decision of the neural network.

(a) The green area to be labeled is 128 by 128
pixels (w = 128). The green patch with the
blue context padding (v = 101) is directly

what the networks take as input.

(b) The data is passed through the network
as large a tile of size w + v by w + v instead
of a minibatch. There is no overlapping data

being passed through the network
redundantly and no duplicated convolution
and pooling operations are carried out. The
output prediction is a large patch (w = 128)

instead of a stride of pixels from a
minibatch (as in Figure 1.1).

Figure 1.2: Pixelwise image classification based on strided kernel and fully
convolutional architectures. (Raw image source: ssTEM [8], [9]).

3

1.4. Existing Work

1.4 Existing Work

This technical report is based on the following existing work:

• SW (sliding window) network designed by Julien Martel [10], not published.
The architecture is trimmed for segmenting the data set DS1.

• Strided kernel convolution and pooling kernels by Hongsheng Li et al. [7].
This is the fundamental approach in speeding up existing SW networks.

• Malis criterion, first introduced by Srinivas Turaga et al. [3]. The criterion sup-
ports an alternative way of training neural networks through affinity graphs,
which is very specific and useful on biomedical data, where areas are separ-
ated by background borders.

• The Open Source Caffe library maintained by the Berkeley Vision and Learn-
ing Center [6], [4].

• U network designed by Ronneberger et al. [2]. This model is also optimized
for biomedical images and especially the data set DS2 (ISBI 2012 [11]).

• N-dimensional convolution kernels by Jeff Donahue [12].

• Segmentation evaluation scripts of the ISBI 2012 challenge [11], [13].

1.5 New Contributions

An overview of new contributions to the Caffe landscape in terms of models, utilit-
ies and library changes is given in Figure 1.3. This work tackles the given problem
on all levels - from using efficient BLAS libraries over backend development and
frontends for easy use to new network models.

On the side of neural network models, this project introduces two new neural
network architectures, the SK-Net (Section 3.3) and USK-Net (Section 3.5).

A meta-analysis of the three efficient networks (SK, U, USK) is given based on:

• Differences and characteristics of the network designs (Chapter 3).

• Computational cost and efficiency (Chapter 6).

• Image segmentation quality, assessed both numerically and visually (Chapter
7) for the typical foreground-background two label classification.

In order to be able to train the network models easily on various data sets, the
Caffe Neural Tool (Chapter 4) has been developed.

The Caffe library (see Chapter 5) has been extended with new layers and adaptions
for compability with the new backend. The new layers also affect the functional-
ity of the CUDA backend. OpenCL backend development (see Section 5.4) was
mostly focused on versatility and completeness, so that CPUs and all kinds of
compute devices can be used on all network models. This includes compability to
three different BLAS libraries: clBLAS, ViennaCL-BLAS and cBLAS.

4

1.5. New Contributions

Models

Frontend
Interface

Library

Backend /
Compute
Kernels

BLAS

SW SK U USK

Caffe binary Pycaffe Caffe Neural Tool

Caffe shared or static library

Greentea
(OpenCL)

Caffe
(CPU native)

Caffe
(CUDA)

ViennaCL
BLAS

clBLAS cBLAS cuBLAS

Figure 1.3: Project Greentea overview. Green boxes denote completely new
additions to the Caffe landscape. Red boxes are parts that have been

re-implemented or adapted from existing work to fit the needs of this project.
Blue parts are mostly unchanged from existing work. Dashed arrows denote

deprecated and only partially supported combinations.

This report is also providing an introduction into segmentation and pixelwise clas-
sification with neural networks. It contains all the details necessary to understand
existing models and readers should be able to easily design their own neural net-
works based on the findings of this research project.

The combination of the new contributions and the Caffe library infrastructure
is summarized under the working title Project Greentea. However, Greentea also
stands for the new OpenCL backend architecture which has been optimized for
high flexibility (see Section 5.4).

Greentea was a name of my choice because I simply prefer greentea over coffee
(Caffe). Greentea can not be used as an abbreviation like it is the case with Caffe,
but as greentea is supposed to be good for the brain, using it for a neural network
machine learning toolset seems to be appropriate.

5

1.6. Terminology

1.6 Terminology

The most used symbols and abbreviations in the report:

• Forwarding, processing: Computing data through a neural network from input
to output.

• Backwarding, training, backpropagation: Computing neural network gradients
(diff maps) in the backward direction and updating the network weights.

• Data blob: Memory blob containing feature maps of forward processing in
the neural network.

• Diff blob: Memory blob containing the differential / error signal map during
backpropagation.

• BLAS: Basic Linear Algebra Subprograms. Includes functions such as effi-
cient matrix multiplications.

• DS1: Data set 1, see Section 2.1.

• DS2: Data set 2, see Section 2.2.

• SW: Sliding window networks for pixelwise classification, see Section 3.2.

• SK: Strided kernel networks for pixelwise classification, see Section 3.3.

• U: Ronneberger et al. [2] network architecture, see Section 3.4.

• USK: Network architecture combining SK and U aspects, see Section 3.5.

• f : Number of feature maps after (fout) and before (fin) a network layer.

• w: Size (in each dimension) of a feature map in a network layer. When not
indexed or otherwise noted, it refers to the output size of a network layer.

• v: Size of the total network input padding (context).

• p: Network layer padding.

• s: Network layer stride.

• k: Network layer kernel size.

• d: Network layer kernel stride.

• L: Set of layers with layers l ∈ L.

• B: Set of memory blobs with blobs b ∈ B.

• W: Set of network weights, |W| denotes the number of weights.

• M: Device or host memory usage.

• q: Number of queues in the Caffe OpenCL backend.

• n: Network minibatch size.

• A: Affinity graph data, ∆A denotes the affinity graph diff.

• I: Pixel image data, ∆I denotes the image diff.

Some symbols are used differently in some sections of the report and are explained
in-place.

6

Chapter 2

Datasets

2.1 DS1 - Segmented anisotropic ssTEM dataset of neural
tissue

Figure 2.1: DS1 ssTEM raw image, 512 by 512 pixels of image 2 (right upper
corner) (Source: ssTEM [8], [9]).

This data set shows neural tissue from a Drosophila larva ventral nerve cord and
was acquired using serial section Transmission Electron Microscopy at HHMI Jane-
lia Research Campus [8]. The training data consists of 20 images of 1024 by 1024
pixels raw ssTEM and the corresponding segmentation. It is segmented into nine
different labels, which are consolidated into foreground and background for two
label training and evaluation (see Section 7.2):

7

2.1. DS1 - Segmented anisotropic ssTEM dataset of neural tissue

• #0: Horizontal cell membranes - background

• #1: +45◦ to vertical cell membranes - background

• #2: Vertical cell membranes - background

• #3: -45◦ to vertical cell membranes - background

• #4: Cell membrane junctions - background

• #5: Glia cells - background

• #6: Mitochondria - foreground

• #7: Synapses - background

• #8: Cell interior - foreground

The idea behind label consolidation in this way is that the network, during train-
ing, can learn the separation borders between neural cells. This is especially im-
portant with the Malis criterion loss (see Section 5.3.2), which can only segment
into foreground and background. With the Softmax loss, it is also possible to let
the network learn the labels separately and combine them accordingly afterwards.
The network has to learn the features separately either way, as the membrane for
example depends on different orientations in the convolution filters. This means
a network can be trained on two labels only and afterwards, all nine labels can be
extracted by applying a short fine-tuning training phase to the network.

(a) All 9 labels, the blue mitochondria and
white cell interiors are the foreground.

(b) Consolidated labels,
background-foreground segmentation.

Figure 2.2: DS1 ssTEM label images, 512 by 512 pixels of image 2, corresponding
to the raw image in Figure 2.1 (Source: ssTEM [8], [9]).

For evaluation, the training data set has been split into training and testing data
because of the lack of a segmented test data stack:

• Train images: 0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18 and 19

8

2.2. DS2 - ISBI 2012 dataset of neural tissue

• Test images: 2, 7, 12 and 17

As all slices of the data set are very similar, cross validation by splitting the data
set in different ways was not applied. The total amount of pixels for training is
therefore 16 · 10242 ≈ 16 Mpixel.

The data set with the corresponding test and train scripts is available in the Caffe
Neural Models repository [9] as dataset 01.

2.2 DS2 - ISBI 2012 dataset of neural tissue

Figure 2.3: DS2 raw image, 512 by 512 pixels of training image 1 (Source: ISBI
challenge [11], [9]).

This data set is from the ISBI 2012 challenge [11], [14], [15]. The raw images and
corresponding segmentation images for training are 512 by 512 pixels. The neural
tissue features have a similar scale to the data set DS1. The raw images have a bit
less contrast and are more fuzzy.

The training set has 30 images, which gives a total of 30 · 5122 ≈ 7.8 Mpixel, which
is about half as much as on DS1.

The test data used on DS2 is a separate stack of 30 images of size 512 by 512 pixels.
For those images, segmentation ground truth is not available for public download,
thus the evaluation reported in Section 7.3 is solely based on the reports of the
official ISBI 2012 evaluation [11], which is still open for new results.

For both stacks, the data spans 2 x 2 x 1.5 microns with a resolution of 4 by 4 by
50 nm/pixel [11].

9

2.2. DS2 - ISBI 2012 dataset of neural tissue

Figure 2.4: DS2 label image, 512 by 512 pixels of training image 1, corresponding
to the raw image in Figure 2.3 (Source: ISBI challenge [11], [9]).

The data set with the corresponding test and train scripts is available in the Caffe
Neural Models repository [9] as dataset 02.

10

Chapter 3

Models

3.1 Introduction

This chapter describes how the network architectures were set up for training
and processing the data sets DS1 and DS2. They were configured for two label
classification, however also nine labels were tested and even more could be learned
through the Softmax loss. With Malis loss (Section 5.3.2), only foreground and
background separation is implemented.

For all networks architectures, no special striding or padding was used. Therefore
the striding parameter is set to be s = 1, except for downsampling and sliding
window pooling operations, which use s = k (stride matches kernel size). The
padding is always p = 0. All networks use square size filters and feature maps,
which simplifies the descriptions to just one value per parameter. The models can
be generalized to arbitrary dimensions with different sizes in each dimension. At
the time of the project, SK networks up to 6 dimensional can be configured with
the modified Caffe library provided [5].

The mini batch size used for processing in the SW network is n = 256, but the
choice is arbitrary and only limited by GPU memory. With SK, U and USK net-
works, a minibatch size of one (n = 1) is sufficient to reach 100% GPU utilization,
and often the GPU memory is not sufficient for bigger mini batch sizes (see Section
6.4). It is rather useful to increase the network output size than using minibatches,
if the data set allows it by having big enough input pictures.

All efficient networks presented here (excluding the sliding window) can be run
with almost any size of output prediction maps. Only constraints on even divisib-
ility with pooling operations, as well as the size constraints given by convolutions
and strided kernels (see Section 3.3) have to be met. The networks can therefore
be run on different input image sizes, depending on memory requirements (see
Section 6.4) and data set image size, without re-design and re-training of the net-
works. The results are numerically identical in this case.

The total padding (v) of the networks is a characteristic of the network itself and
can not be changed without re-design and re-training. It describes the amount of
context considered for each pixel prediction.

11

3.2. Sliding Window (SW-Net)

To fit the networks to data sets with features of different scales than DS1 and DS2
(see Chapter 2), it may be necessary to adapt kernel sizes and layers to get good
predictions after training. Here, the networks are configured so that a big mito-
chondrion (about 100 by 100 pixels) would fit into the context of a pixel prediction
centered on the mitochondrion.

3.2 Sliding Window (SW-Net)

Sliding window networks classify an image by taking a pixel and a border padding
v of some size around it as input and classify the center pixel by running the patch
through a neural network. Then the next pixel is labeled by shifting the window
patch by one pixel, classifying the neighboring pixel of the first one. The pixels
can also be processed in a minibatch to increase GPU utilization and amortize
direct memory access transfer times (from host to device memory). This is still
very inefficient as most of the context of two neighboring pixels overlaps and the
same filters are applied over the whole context. The redundant computations can
be reduced for a patch of input pixels by using SK networks.

The sliding window network described here was developed by Julien Martel [10].
It is the baseline for calculating the speedups obtained with the SK, U and USK
networks. The structure of the SW network was also used when designing the SK
network and the core of the USK network. The reason why this was used as a
basis is that it has already been trained on the data set DS1 and had good results.
Learning rate, weight decay and training parameters were available. However, no
numerical evaluation or publication about the network architecture exists.

Layer Type w fin fout k s
data MemoryData 100 3 3 1 1
conv1 + relu1 Convolution + ReLU 94 3 48 7 1
pool1 Max Pooling 47 48 48 2 2
conv2 + relu2 Convolution + ReLU 43 48 128 5 1
pool2 Max Pooling 22 128 128 2 2
conv3 + relu3 Convolution + ReLU 20 128 192 3 1
pool3 Max Pooling 10 192 192 2 2
ip1 + relu4 InnerProduct + ReLU 1 192 1024 10 1
ip2 + relu5 InnerProduct + ReLU 1 1024 512 1 1
ip3 InnerProduct 1 512 2 1 1
prob Softmax 1 2 2 1 1

Table 3.1: Network setup for the SW model.

The sliding window network has not been evaluated in-depth in terms of bench-
marking and quality assessment. This is because the Caffe Neural Tool (see
Chapter 4) used for detailed benchmarking and processing does not work with
minibatches in its current form. Its segmentation performance should however
be numerically equal to the SK network, which is derived from the SW network.

12

3.3. SK-Net

Any differences would be due to different training methods (patches on SK versus
minibatches on SW). Information about how single layers speed up from SW to SK
networks (both theory and experimental) can be found in the work of Hongsheng
Li et al. [7].

For weight initialization, the SW network uses random initialization drawn from
a Gaussian distribution with µ = 0 and σ = 0.01.

3.3 SK-Net

3.3.1 Converting SW Networks to SK

Hongsheng Li et al. [7] provide a pseudo code (page 4) on how to convert a slid-
ing window network to a strided kernel network. However, it is incomplete on
consistency checking, kernel sizes and feature map output sizes. Also, the theory
of converting inner product (fully connected) layers is not described. Therefore I
provide a more complete version (see Algorithm 1), although without considering
padding and striding. This enforces s = 1 and p = 0 in all layers of the SK net-
work. Each data dimension (width, height, depth) can be processed separately for
the kernel size (k), kernel stride (d) and output dimension (w). The algorithm is
able to convert networks and find consistency issues fully automatized.

For Caffe prototxt network configurations, only the kernel size k and kernel stride
d have to be provided. Output dimensions will be computed on the fly, given the
network input size w(0)

SK . Padding and striding parameters can be left away, they
will default to the correct values.

Algorithm 1 assumes that |LSW| = |LSK| = N, not taking into account the input
data layer, which is at i = 0.
If a layer type is not handled in a special if -case, it is handled by using the exact
same configuration as in the original network. This fails however if the layer
does anything other than an element-wise operation (this implies k = 1), be-
cause of the kernel stride d > 1. During the conversion, the initial input size
w(0)

SK is equal to what the SW network used. Afterwards, an arbitrary input size

w(0)
SK ≥ w(0)

SW can be used during training and processing, and the output will be of

size w(N)
SK = w(0)

SK − w(0)
SW + 1.

Using w(0)
SW = w(0)

SK also helps to prove that the results stay numerically the same. In
this case, the strides introduced by pooling operations will be implicitly ignored.
They will not be taken into account at the first inner product layer (ip1), which
will span the whole feature map size, because the external kernel size is

w(i−1)
SK = (k(i)SK − 1)d(i)SK + 1 =⇒ w(i)

SK = 1 (3.1)

and
w(i−1)

SW = k(i)SW = k(i)SK =⇒ w(i)
SW = 1 (3.2)

at that layer. This property can be visualized as well, as in Figure 3.1, where the
first inner product layer (ip1) has a kernel size of kSK = 3 = w(9)

SW.

13

3.3. SK-Net

For the originally inner product (fully connected) layers in SW-Net, which are now
normal convolutions, (ip1 to ip3) there are no computational savings compared to
the SW network anymore. This is clear from the observation that the ip1 layer
isolates the context of each pixel and no overlappings in the feature maps exist
after this layer.
The number of input (fin) and output (fout) feature maps remains exactly the same
for SW and SK networks in all layers.

Algorithm 1 Convert SW-Net to SK-Net

1: procedure Convert

2: ∀i ∈ [1, N].s(i)SK ← 1

3: ∀i ∈ [1, N].p(i)SK ← 0

4: w(0)
SK ← w(0)

SW
5: dtemp ← 1
6: for i = 1; i ≤ N; i← i + 1 do
7: if l(i)SW = convolution then
8: l(i)SK ← convolution SK

9: k(i)SK ← k(i)SW

10: d(i)SK ← dtemp

11: w(i)
SK ← w(i−1)

SK − (k(i)SK − 1) · d(i)SK . w(i)
SW ← w(i−1)

SW − (k(i)SW − 1)

12: else if l(i)SW = pooling then
13: if w(i−1)

SW mod k(i)SW 6= 0∨ k(i)SW 6= s(i)SW then return error

14: l(i)SK ← pooling SK

15: k(i)SK ← k(i)SW

16: d(i)SK ← dtemp

17: w(i)
SK ← w(i−1)

SK − (k(i)SK − 1) · d(i)SK . w(i)
SW ←

⌈
w(i−1)

SW

k(i)SW

⌉
18: dtemp ← dtemp · k(i)SK

19: else if l(i)SW = inner product then
20: l(i)SK ← convolution SK

21: k(i)SK ← w(i−1)
SW . k(i)SW = w(i−1)

SW is implicit

22: d(i)SK ← dtemp

23: w(i)
SK ← w(i−1)

SK − (k(i)SK − 1) · d(i)SK . w(i)
SW ← 1

24: dtemp ← 1
25: else
26: if k(i)SW > 1 then return error

27: lSK ← lSW

28: w(i)
SK ← w(i−1)

SK . w(i)
SW ← w(i−1)

SW

29: if dtemp = 1 then return success
30: else return error

14

3.3. SK-Net

w(0)
SK

w(0)
SW

w(1,2)
SK

w(1,2)
SW

w(3)
SK

w(4,5)
SK

w(6)
SK

w(7,8)
SK

w(9)
SK

d = 2

d = 2 d = 4 d = 4 d = 8

conv1 pool1 conv2

pool2 conv3 pool3 ip1

ip2

ip3

Figure 3.1: SK (strided kernel) feature maps. The kernel and feature map sizes
used here are smaller than in the actual SK network in order to fit it into a

reasonably sized figure. The input size is w(0)
SK = w(0)

SW + 2 and consequently the
output is 3 by 3 pixels as inferred from Algorithm 1. The red squares trace the

information flow in the original SW network. Convolutions and their ReLU
activations are not displayed separately.

Observations on Algorithm 1:

• Line 13: Implies only downsamlpling pooling layers can be converted. Pool-
ing with s = 1 instead of s = k would need to be handled like convolutions
in terms of kernel and output size, and would not change the kernel stride
d. This has not been assessed further.

• Line 17: Caffe can handle downsampling poolings that overlap the border
in SW networks, which causes implicit zero padding. This is not allowed in
SK networks, therefore Line 13 checks if w mod k = 0. Continuing without
this check would cause the new strided pooling layer to overlap on data that
would normally be separated by a stride, and also output feature maps of
wrong sizes to continue.

• Line 18: Using downsampling is the only operation that increases the kernel
stride. All other operations either keep the context local (convolutions) or
have k = 1 (element-wise operations).

• Lines 11, 17, 23: Interestingly, all converted layer types with kernel sizes now

15

3.3. SK-Net

decrease the feature map sizes by the same formula. Convolution and inner
product layers implicitly inherit this behavior. Pooling does this because it
separates output pixels by a stride equal to the downsampling kernel size k.

• Line 29: Having a kernel stride d > 1 in the last layer implies pixels in the
output feature maps are not independent from each other. In this case, the
network has not been converted correctly and possibly lacks at least one
inner product layer.

3.3.2 SK Network

When processing the network in Table 3.1, the condition w(i−1)
SW mod k(i)SW 6= 0

given by Algorithm 1 is actually violated by the second pooling layer, having 43
mod 2 6= 0. It is easy to fix this by starting at the last layer of the network and
computing

w(i−1)
SW = k(i)SWw(i)

SW (3.3)

for pooling layers and
w(i−1)

SW = (k(i)SW − 1) + w(i)
SW (3.4)

for inner product and convolution layers. The corrected network is given in Table
3.2. Converting this to SK results in the network in Table 3.3.

Layer Type w fin fout k s
data MemoryData 102 3 3 1 1
conv1 + relu1 Convolution + ReLU 96 3 48 7 1
pool1 Max Pooling 48 48 48 2 2
conv2 + relu2 Convolution + ReLU 44 48 128 5 1
pool2 Max Pooling 22 128 128 2 2
conv3 + relu3 Convolution + ReLU 20 128 192 3 1
pool3 Max Pooling 10 192 192 2 2
ip1 + relu4 InnerProduct + ReLU 1 192 1024 10 1
ip2 + relu5 InnerProduct + ReLU 1 1024 512 1 1
ip3 InnerProduct 1 512 2 1 1
prob Softmax 1 2 2 1 1

Table 3.2: Network setup for the corrected SW model.

16

3.3. SK-Net

Layer Type w fin fout k s d
data MemoryData 229 3 3 1 1 1
conv1 + relu1 Conv. SK + ReLU 223 3 48 7 1 1
pool1 Max Pool. SK 222 48 48 2 1 1
conv2 + relu2 Conv. SK + ReLU 214 48 128 5 1 2
pool2 Max Pool. SK 212 128 128 2 1 2
conv3 + relu3 Conv. SK + ReLU 204 128 192 3 1 4
pool3 Max Pool. SK 200 192 192 2 1 4
ip1 + relu4 Conv. SK + ReLU 128 192 1024 10 1 8
ip2 + relu5 Conv. SK + ReLU 128 1024 512 1 1 1
ip3 Conv. SK 128 512 2 1 1 1
prob Softmax 128 2 2 1 1 1

Table 3.3: SK network configuration.

The final three inner product layers from the SW network actually become convo-
lutions with special properties: For ip1, the rules stay the same as for converted
convolution layers. Afterwards, ip2 and ip3 can have an arbitrary kernel stride d
because the kernel size k only spans one pixel in each feature map. To not cause
confusion, it should be configured so that d = 1 for those layers.

The network still has one issue, which is not nice but acceptable and the network
will still work. The issue is that there is no center pixel, because

(w(0)
SW=̂102) mod 2 = 0 (3.5)

Each patch in the original network has a context of 102 pixels. When converting to
SK and classifying a patch of 128 by 128 pixels as given in Table 3.3, the padding
to add in the beginning actually becomes v = 101 pixels. This padding can not be
split up into a border around the patch to classify. To simplify this issue, a border
of 51 pixels on each side is assumed and then cropped by one pixel on the bottom
and right side. This results the same behavior as running a 102 by 102 pixel sliding
window network across the input, which was also padded with 51 pixels in the
corrected version and 50 pixels in the original version.

To estimate the number of free parameters (all convolution weights |W|) that can
be trained in a model, the following formula is used:

|W| = ∑
l(i)∈Lconv.

f (i)in · f (i)out · (k(i))2 (3.6)

Using the values in Table 3.3, this gives |W| ≈ 20.5 · 106 parameters, of which most
(≈ 19.6 · 106) are within the ip1 layer.

For weight initialization, the SK network uses random initialization drawn from a
Gaussian distribution with µ = 0 and σ = 0.01.

17

3.4. U-Net

3
22

92
48

22
32

48

22
22

128

21
42

128

21
22

192

20
42

192

20
02

1024

12
82

512

12
82

2

12
82

Convolution
Pooling

Figure 3.2: SK network configuration visualization. Green-red striped blocks
represent feature maps with a kernel stride (d > 1). Vertical numbers represent
the size of the feature maps while the horizontal numbers represent the number

of feature maps.

A directed acyclic graph representation of the network can be found in the ap-
pendix A.1.

3.4 U-Net

The U-Net presented here is the network configuration as described in the Ron-
neberger et al. paper [2]. Table 3.4 describes the network in the same style as Table
3.3 for the SK network in order to compare them. The layer names are chosen
in the same style as with SW and SK networks. The U-Net has contracting and
expanding sections:

• Contracting: Two convolutions followed by one max pooling layer.

• Expanding: Deconvolution followed by a convolution to reduce the number
of feature maps, a mergecrop and two convoluton layers.

The source code for running U-Net as well as the prototxt configuration files were
not available for download at the time of this project, thus the network presented
here, which is my own interpretation, might differ from the original design. The
paper does not give all details, such as how the MergeCrop layer and Upconvolution
work. The configurations of this U-Net included in the Caffe Neural Models [9]
are therefore incompatible to the original work [2]. Segmentation results should
be comparable.

Layer Type w fin fout k s
data MemoryData 572 3 3 1 1
conv1 + relu1 Convolution + ReLU 570 3 64 3 1
conv2 + relu2 Convolution + ReLU 568 64 64 3 1
pool1 Max Pooling 284 64 64 2 2
conv3 + relu3 Convolution + ReLU 282 64 128 3 1

18

3.4. U-Net

conv4 + relu4 Convolution + ReLU 280 128 128 3 1
pool2 Max Pooling 140 128 128 2 2
conv5 + relu5 Convolution + ReLU 138 128 256 3 1
conv6 + relu6 Convolution + ReLU 136 256 256 3 1
pool3 Max Pooling 68 256 256 2 2
conv7 + relu7 Convolution + ReLU 66 256 512 3 1
conv8 + relu8 Convolution + ReLU 64 512 512 3 1
pool4 Max Pooling 32 512 512 2 2
conv9 + relu9 Convolution + ReLU 30 512 1024 3 1
conv10 + relu10 Convolution + ReLU 28 1024 1024 3 1
upconv1 Deconvolution 56 1024 1024 2 2
conv11 Convolution 56 1024 512 1 1
mergecrop1 MergeCrop 56 512 + 512 1024 1 1
conv12 + relu11 Convolution + ReLU 54 1024 512 3 1
conv13 + relu12 Convolution + ReLU 52 512 512 3 1
upconv2 Deconvolution 104 512 512 2 2
conv14 Convolution 104 512 256 1 1
mergecrop2 MergeCrop 104 256 + 256 512 1 1
conv15 + relu13 Convolution + ReLU 102 512 256 3 1
conv16 + relu14 Convolution + ReLU 100 256 256 3 1
upconv3 Deconvolution 200 256 256 2 2
conv17 Convolution 200 256 128 1 1
mergecrop3 MergeCrop 200 128 + 128 256 1 1
conv18 + relu15 Convolution + ReLU 198 256 128 3 1
conv19 + relu16 Convolution + ReLU 196 128 128 3 1
upconv4 Deconvolution 392 128 128 2 2
conv20 Convolution 392 128 64 1 1
mergecrop4 MergeCrop 392 64 + 64 128 1 1
conv21 + relu17 Convolution + ReLU 390 128 64 3 1
conv22 + relu18 Convolution + ReLU 388 64 64 3 1
ip1 Convolution 388 64 2 1 1
prob Softmax 388 2 2 1 1

Table 3.4: U network configuration.

The U-Net architecture has |W| ≈ 29 · 106 parameters, using Equation 3.6 and
the corresponding values in Table 3.4. Thus there are about 30% more parameters
than in SK-Net. The number of weights rises towards the middle of the U network,
due to having the same convolution kernel size (3 by 3) throughout the network
and more feature maps with every contracting step.

For weight initialization, the U network uses random initialization drawn from a
Gaussian distribution with µ = 0 and σ =

√
2/(fin · k2). This is the same as used

in the original paper [2]. With σ = 0.01 as in SK and SW models, the network
could not be trained properly.

19

3.5. USK-Net

The upconvolutions are set to nearest neighbor interpolation, which causes each
pixel in the fin maps to fill exactly four pixels (two by two) in the fout maps.

3

57
22

64

57
02

64
56

82
28

42

128

28
22

128

28
02

14
02

256

13
82

256

13
62

68
2

512

66
2

512

64
2

32
2

1024

30
2

28
2

1024

56
2

512

54
2

52
2

512

10
42

256

10
22

10
02

256

20
02

128

19
82

19
62

128

39
22

64

39
02

64

38
82

2

38
82

Convolution
Pooling
Upconvolution
Other

Figure 3.3: U network configuration visualization. Vertical numbers represent the
size of the feature maps while the horizontal numbers represent the number of

feature maps.

Figure 3.3 represents the network in a style identical to the one used by Ronneber-
ger et al. [2]. A directed acyclic graph representation of the network can be found
in the appendix A.2.

3.5 USK-Net

The USK network architecture combines ideas from the U and SK models. The ma-
jority of the convolutions and therefore free parameters can be trained on down-
sampled feature maps by using one or more contracting path steps (and their
expanding counterpart) from the U-Net.
After one contracting step, the same sequence of layers as in the SK network is

20

3.5. USK-Net

applied, however with different kernel sizes to match the sizes of the inputs and
outputs as required by the U subnetwork. The network has been configured so
that:

• The network outputs 512 by 512 pixel labels.

• The context considered for each pixel classification is 180 by 180 pixels.

• As a result, the network input is 692 by 692 pixels.

• The SK network part (conv3 to ip2) is required to accept 344 by 344 pixels as
input and outputs 258 by 258 pixels. It therefore sees a context of 86 pixels.
This is on once by a factor of two downsampled feature maps.

Prior experiments with two contracting and expanding steps were not very suc-
cessful, as many features of both datasets (DS1 and DS2) vanished at two times
downsampling and the network also became much harder to train because it gets
very deep. The network mainly relied on the filter results in the two contracting
and expanding step pairs (U subnet) to classify the given input. The signals com-
ing from the SK subnetwork were largely ignored by setting their weights close to
zero in the convolution following after the first mergecrop layer.
Using only one downsampling step fixed this issue and the SK subnetwork con-
tributed properly after training. As the SK subnetwork contains the main com-
putational costs (see Figures 6.9 and 6.10 in Section 6.6.3) and also carries most
parameters, the features have to be meaningful enough at the beginning of the
subnetwork, after the first few layers of the U subnetwork.

Layer Type w fin fout k s d Subnet
data MemoryData 692 3 3 1 1 1 U
conv1 + relu1 Conv. + ReLU 690 3 64 3 1 1 U
conv2 + relu2 Conv. + ReLU 688 64 64 3 1 1 U
pool1 Max Pooling 344 64 64 2 2 1 U
conv3 + relu3 Conv. SK + ReLU 339 64 128 6 1 1 SK
pool2 Max Pool. SK 338 128 128 2 1 1 SK
conv4 + relu4 Conv. SK + ReLU 332 128 128 4 1 2 SK
pool3 Max Pool. SK 330 128 128 2 1 2 SK
conv5 + relu5 Conv. SK + ReLU 318 128 128 4 1 4 SK
pool4 Max Pool. SK 314 128 128 2 1 4 SK
ip1 + relu6 Conv. SK + ReLU 258 128 512 8 1 8 SK
ip2 + relu7 Conv. SK + ReLU 258 512 256 1 1 1 SK
upconv1 Deconv. 516 256 256 2 2 1 U
conv6 Conv. 516 256 128 1 1 1 U
mergecrop1 MergeCrop 516 128 + 64 192 1 1 1 U
conv7 + relu8 Conv. + ReLU 514 192 128 3 1 1 U
conv8 + relu9 Conv. + ReLU 512 128 64 3 1 1 U
ip3 Conv. 512 64 2 1 1 1 U
prob Softmax 512 2 2 1 1 1 U

Table 3.5: USK network configuration.

21

3.5. USK-Net

The USK-Net architecture has |W| ≈ 5.5 · 106 parameters, using Equation 3.6 and
the corresponding values in Table 3.5. This is a fraction (about 25%) of the SK-
and U-Net weights. The savings mainly come from reducing the ip1 layer, which
now only has ≈ 4.2 · 106 weights. While the ip1 layer is still the most expensive
one, the network is more balanced than SK-Net. The inner product layers are
less important, because the U subnetwork merges and convolves the feature maps
from the beginning of the network together with upsampled signals from the ip2
layer. Figure 3.4 displays the balanced feature maps on the two processing paths.
Furthermore, the USK-Net inherits the advantage of having bigger kernel sizes
than only 3 by 3 (U-Net), going up to 8 by 8 in the ip1 and 6 by 6 in the conv2 layer.
This means the USK-Net can learn features with looking at a bigger context inside
the feature maps, while still almost reaching the speed of U-Net (see Section 6.5)
in forward processing.

3

69
22

64

69
02

64

68
82

34
42

128

33
92

128

33
82

128

33
22

128

33
02

128

31
82

128

31
42

512

25
82

25
82

192

51
62

128

51
42

64

51
22

2

51
22

Convolution
Pooling
Upconvolution
Other

Figure 3.4: USK network configuration visualization. Green-red striped blocks
represent feature maps with a kernel stride (d > 1). The U subnetwork blocks are

just displayed red because the kernel stride does not apply there. Vertical
numbers represent the size of the feature maps while the horizontal numbers

represent the number of feature maps.

22

3.5. USK-Net

With less weights and less layers (less depth) than the U-Net, it is easier to train
and also gave better segmentation results on the two evaluation data sets (see
Chapter 7).

The USK network uses random Gaussian weight initialization with µ = 0 and σ =
0.01 for the SK subnet and σ =

√
2/(fin · k2) for the U subnet. Other initializations,

such as σ = 0.01 for the whole network caused the network to either disable
many neurons (causing feature maps with zero activation) or stopped the loss
from decreasing early during training.

A directed acyclic graph representation of the network can be found in the ap-
pendix A.3.

23

Chapter 4

Caffe Neural Tool

4.1 Functionality

As the standard Caffe binary [6] does not support training with patches, a new
interface had to be written on top of the Caffe library. One option is to use the
Pycaffe interface with custom python code to load images and pre-process them
for patch training and processing as depicted in Figure 1.2.

I chose to implement a C++ interface similar to the original binary, because OpenCV
and OpenMP can be used for efficient, parallelized algorithms to preprocess raw
and label images.

The Caffe Neural Tool [16] can be configured for training, processing and bench-
marking with a prototxt file similar to the configuration files used to set up net-
works and solvers (learning configurations) in Caffe. The two most important
functionalities are histogram equalization during training and the image prepro-
cessor, which can prepare the label and raw images in various ways before filling
up the neural network.

Template configurations for training and processing on the data sets DS1 and DS2
as well as benchmark scripts for U-, SK- and USK-Net are available in the Caffe
Neural Models repository [9].

For training, the following parameters have to be provided:

• A Caffe solver prototxt configuration which contains parameters such as
learning rate, weight decay, solver method and the network to use for train-
ing.

• The padding size (v), network output (patch) size (w), network input (fin)
and output (fout) feature map count.

• A folder with raw images and a folder with the corresponding label images,
which are matched by alphabetic order.

• The preprocessor configuration block, including histogram equalization set-
tings.

24

4.2. Preprocessing

• Optionally, a solverstate file to resume a training. The already learned
weights and current learning rate will be loaded instead of the initial net-
work configuration.

For processing, the following parameters have to be provided:

• A Caffe network prototxt configuration to use for processing.

• A caffemodel file, containing the trained network weights.

• A folder with raw images and the segmentation output options (file type,
pixel format and folder).

• The padding size (v), network output (patch) size (w), network input (fin)
and output (fout) feature map count.

• The preprocessor configuration block (without histogram equalization).

• Optionally, all memory blobs in the network can be stored during processing.
This feature is called filter output and is useful to check if the network learns
the right convolution filters.

The tool also supports a variety of input and output image formats: Normal JPEG,
PNG, TIF and BMP files as well as TIF image stacks (multiple images in one file)
and 32 bit floating point TIF instead of integer pixel values.

When benchmarking, the tool re-uses existing training and processing configura-
tions, but only fills the network with random data. It will report memory usage,
layer wise forward and backward times and the total processing time of the net-
work. For convolution layers, it will also estimate and store the computational
complexity. This was used to generate the results in Chapter 6.

4.2 Preprocessing

The preprocessing options available are:

• Label consolidation, allowing to combine multiple labels into one. This tech-
nique was used on the data set DS1 (see Section 2.1). The consolidation is
applied after histogram equalization, allowing to balance out difficult and
rare labels before consolidating to only background and foreground. This
also allows to mark important small, difficult features in the training data.

• Rotation of the training patches to a random multiple of 90◦.

• Random mirroring of the training patches.

• Blurring training patches with a Gaussian kernel of any size. The blurring
has a zero mean and the variance is picked at random from a normal distri-
bution. The mean and variance of the distribution can be selected.

• CLAHE (contrast limited adaptive histogram equalization), with a clipping
parameter. The function is integrated with OpenCV.

• Patch normalization to [−1.0, 1.0] in floating point before feeding the neural
network.

25

4.3. Histogram Equalization

There are a few reasons why arbitrary rotation is not available:

• Interpolating to any angle that is not a multiple of 90◦ causes aliasing of
training patches (labels and raw images).

• Arbitrary rotations make the training patch smaller due to corner cutting.
This means there are less available total patches and the computation of
histogram equalization methods gets much more complicated. The assump-
tions about the patch prior and label posterior distributions do not hold
anymore.

• It is questionable how useful the additional training data would be. Elastic
deformations would have more potential in generating unique new training
data for biological images such as neural tissue EM images of DS1 and DS2.

4.3 Histogram Equalization

Histogram equalization is a technique to balance out the frequency of labels that
the network sees during training. As training with patches leads to a set of de-
pendent pixels which are in close proximity on an image (see Figure 1.2), the
training results can be worse than with minibatches. With minibatches (see Figure
1.1), it is possible to create a database of single pixel labels and the minibatch can
draw n independent pixels to train with in each stochastic gradient descent step.

The first equalization approach is a patch prior, which will prefer patches with
rare labels. This is done by comparing the label distribution within each patch to
the total label frequency in all training images.

rj =
n−1

∑
i=0

aj,i

ci
(4.1)

ĉi =
1
Zi

m−1

∑
j=0

rj · aj,i (4.2)

For patches j = 0, . . . , m− 1 and labels i = 0, . . . , n− 1, Equation 4.1 calculates the
weight for each patch (rj) based on the total label distribution ci and the frequency
within each patch (aj,i). Equation 4.2 calculates the label posterior distribution ĉi
based on the patch weights rj and the label frequency within the patch. Zi is a
normalization factor to get ∑n−1

i=0 ĉi = 1.

The method does help if there are patches that have rare labels, because those
patches will be drawn at random with a higher probability than others. An ex-
ample is the synapse label (number 7) (see Figure 4.1 and Table 4.1). It cannot
balance the labels which have a similar distribution in every patch - for example
cell membranes versus cell interior.

When the patch size gets bigger and approaches the size of the training images, the
label distribution after the patch prior approaches the original label distribution.
Thus the patch prior only works with small training patches. It can also completely

26

4.3. Histogram Equalization

equalize the histogram when using a single pixel as patch size (w = 1), as this is
the same situation as with independent pixels.

When calculating label frequencies ci, it is taken into account that pixel labels
closer to the border of the image are covered by less patches than those in the
center of the image. A patch can start and end at any offset inside the image.
Corner pixels for example are only covered by the one patch that starts in that
corner.

After applying the patch prior, the new label distribution ĉi is depicted in Figure
4.1 with values from Table 4.1.

Method 0 1 2 3 4 5 6 7 8
None (ci) (%) 2.5 3.0 3.5 3.3 5.1 3.0 5.5 0.6 73.6
Patch prior (ĉi) (%) 2.9 3.4 4.0 3.7 6.1 6.3 7.3 1.9 64.3
Masking (%) 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1

Table 4.1: Label frequency using different histogram equalization techniques.

0 1 2 3 4 5 6 7 8
Label

0

10

20

30

40

50

60

70

La
b
e
l
fr

e
q
u
e
n
cy

 [
%

]

(a) No equalization (ci). The majority of
labels is underrepresented.

0 1 2 3 4 5 6 7 8
Label

0

10

20

30

40

50

60

70

La
b
e
l
fr

e
q
u
e
n
cy

 [
%

]

(b) Patch prior (ĉi) on 64 by 64 pixel patches
(w = 64).

Figure 4.1: Label frequency using the patch prior. Label 8, the cell interior, gets
slightly reduced while especially glia cells (5), mitochondria (6) and synapses (7)

are represented stronger. Label numbers correspond to DS1 (see Section 2.1).

The second method masks pixels randomly in each patch, where the random func-
tion is thresholded by the inverse frequency of the label. This means a pixel of
label type i gets masked (removed) from the error map if:

c−1
i · (min

j
cj)
−1 < p (4.3)

In Equation 4.3, p ∈ [0, 1] is a random value picked at uniform and ci ∈ [0, 1] the
label frequency for label i = 0, . . . , n − 1. Less frequent labels are less likely to

27

4.3. Histogram Equalization

be masked out, while membrane and cell interior labels, which are very common,
get masked with a high probability. The result is a completely balanced label
histogram (see Table 4.1). The least frequent label consequently never gets masked.

The best solution to train on an exact label distribution as desired remains to do
minibatch training. This is theoretically also possible with SK-, USK- and U-Net,
but very inefficient in terms of training speed.

Minibatch training is the standard for most networks, also for SW-Net. The net-
work weights are updated every time after a patch or minibatch has run through
forwarding and backwarding. The gradients get accumulated over all error pixels
in the Softmax loss layer and are then normalized for stable training.

Having a balanced label distribution is mostly important with Softmax and multi
label classification. When doing background-foreground separation with Malis,
the patch prior has little to no effect and masking can not be used at all. Malis does
already focus the error on problematic zones globally over the whole patch that
runs through the network (see Section 5.3.2) and therefore the label distribution
during training does not matter.

28

Chapter 5

Caffe Library

5.1 Introduction

Adapting the Caffe library for efficient pixelwise classification on heterogeneous
hardware contains the most programming work in the scope of the project, chan-
ging 20’000 lines of code compared to the BVLC master branch [5], [6].

The changes can be grouped into adaptions on different levels:

• Modified solver and network code to support the Caffe Neural Tool C++
interface.

• Modified existing layers to fit the pixelwise inputs and outputs.

• Additional layers for SK, U and USK architectures.

• Additional layers for the Malis loss.

• Redesign of N-dimensional layers to support up to 6D convolutions and max
pooling with strided kernels.

• OpenCL and OpenCL hybrid code for supporting a wide range of GPUs and
CPUs.

• Backend adaptions to allow dynamic backend dispatching at run- and compile-
time.

• Adapted GNU Makefile and CMake build infrastructures to support the new
OpenCL backend.

The changes are implemented in a way that does not break backward compability
to the original library. All existing network models and trained networks can still
be used. The source code remains highly maintainable and was ahead of the Caffe
BVLC branch [6] during the whole scope of the project.

29

5.2. Modified Layers

5.2 Modified Layers

5.2.1 SK Layers

SK (strided kernel) layers are layers with a kernel size k > 1 and an inner stride in
the kernel (d > 1). The result is a kernel that looks at a feature map in a context
of (k− 1) · d + 1 pixels, which is also called the external kernel size.
The motivation to have such kernels is to be able to convert single pixel predic-
tion networks (sliding window (SW) networks), to patch prediction networks (SK).
How this works is visible in the Figures 1.1 and 1.2, as well as the strided repres-
entation in Figure 3.1.

For SK convolutions, the matrix multiplication (see Section 5.5) stays the same as
with normal convolutions. Only the im2col and col2im memory copy kernels have
to be adapted. For this, I used the existing kernel codes provided by Hongsheng
Li et al. [7].

Changing existing im2col and col2im kernels to support d > 1 is trivial:
The kernels just read the data by iterating over all input feature maps and dimen-
sions. Within each dimension, the iteration goes over the kernel size k, copying
data into the convolution buffer.
With strided kernels, when iterating over the kernel, the reading pointer has to be
increased by the dimension stride multiplied by the kernel stride d instead of just
adding the dimension stride. The dimension stride is (w(i−1))j, starting at j = 0
for the first dimension and w(i−1) denoting the input feature map size.

The same iteration scheme applies for pooling operation kernels. All other layers
do not have to be adapted and work together with SK layers as long as they have
a kernel size of k = 1 (see Algorithm 1).

Strided kernels are only implemented in CUDA and OpenCL and do not run as
native CPU code.

5.2.2 N-Dimensional Layers

The Caffe library is able to specify an arbitrary amount of dimensions for the blob
memory infrastructure used to pass data between layers. However, not all layers
automatically work in higher dimensions. For most element-wise kernels, nothing
has to be changed. Convolutions and pooling operations require a slight redesign.

For convolutions, the matrix multiplication stays again the same as with normal
and strided kernel convolutions (see Section 5.5). There were existing kernels for
normal N-dimensional convolutions by Jeff Donahue [12]. However, those kernels
only support the default kernel stride d = 1.

In the scope of this research project, at HHMI Janelia, I combined the existing code
of the strided kernel and N dimensional convolutions to get the most generalized
form of convolutions, supporting up to 6 dimensions and kernel strides. The 6 di-
mension limit exists because allocating local arrays of dynamic sizes is not allowed
in OpenCL and CUDA. The arrays are required to store temporary variables such
as iterators for each dimension.

30

5.3. New Layers

Derived from the convolution code, I also implemented the max pooling function
as ND-SK kernel.

In the case of 1D or 2D, the SK and normal convolution layers should be con-
sidered, as looping over two dimensions is more efficient than having an outer
loop over dimensions and an inner loop which processes one dimension at a time.
The ND layers should be used from 3D to 6D.

This report does not analyze any networks with a dimension higher than two, but
it is possible to replace ConvolutionSK layers by ConvolutionND layers in the SK-
Net to get an arbitrary dimensional network. It may be required to reduce the
network output size and feature map count in order to meet memory constraints.

N-dimensional kernels are only implemented in CUDA and OpenCL and do not
run as native CPU code.

5.3 New Layers

5.3.1 Merge Crop

The MergeCrop layer is required in U- and USK-Net architectures (see Sections 3.4
and 3.5). The layer accepts two input blobs:

• Blob A of size w(i−1)
A .

• Blob B of size w(i−1)
B ≥ w(i−1)

A .

The layer outputs a blob containing all feature maps of A and B, which can have a
different amount of feature maps. Input B has to be cropped to the size of A. The
output feature maps are of size w(i) = w(i−1)

A .

During backpropagation, the error maps are propagated through by copying them
in the inverse direction. For U- and USK-Net, backwarding is only enabled for the
input A, as input B gets the differential data on a different path (from the down
sampling pooling layer) in the neural network. Copying back B would overwrite
the gradients and interfere with the intended training.

MergeCrop is only implemented in CUDA and OpenCL and does not run as native
CPU code.

5.3.2 Malis Loss

MALIS stands for maximum affinity learning of image segmentation. The imple-
mentation in Caffe [5] that I provide is based on existing code to compute the
Malis criterion for Matlab [17] and Torch [18] by Srinivas Turaga et al. [3].

Additional layer forward and backward functions (for interaction with Caffe),
memory management and the two additional layers ConnectedComponent and Af-
finity are new contributions. The layers are only implemented as CPU code and
do not run on OpenCL or CUDA.

Figure 5.1 describes how the Malis criterion loss is used together with the network
models presented in this report (see Chapter 3). In place of the Softmax activation

31

5.3. New Layers

for two labels, a rectified linear unit or other activation could also be used. The
split layer is required to feed the ground truth label blob into the two following
components and affinity layers.

The layer structure is separable so that the Malis loss can be used with feeding in
external connected component and label affinity maps instead of computing them
indirectly. Likewise, the neural network can directly learn affinity graphs instead
of pixelwise labels.

label_b

components (ConnectedComponent)

prob (Softmax)

prob

prob_affinity

loss (MalisLoss)

data (MemoryData)

datai data

affinity (Affinity)

label_affinity

silence (Silence)

label (MemoryData)

labeli

label

ip (Convolution) kernel size: 1 stride: 1 pad: 0 kstride: 1

split (Split)

label_a

component

ip

2

Figure 5.1: Malis loss setup DAG. In place of the single ip convolution layer, there
would be a whole neural network (see Appendix A).

As the Malis criterion is calculating minimum spanning trees between pixel pairs
on affinity graphs and is only selecting the minimum edge of the tree as error
edge, if the position is indeed an error in the prediction, the actual Malis function
is called twice on two affinity maps A+ and A−.

32

5.3. New Layers

Having the predicted affinity graph Apred (=prob affinity) and the ground truth to
it (Alabel (=label affinity)), two new affinity maps are generated:

A+ = min(Apred, Alabel) (5.1)

A− = max(Apred, Alabel) (5.2)

Then, A+ will not contain any errors on the background prediction while A−

has no errors in the foreground. The result is that the Malis criterion is able to
isolate errors in the background prediction (membranes with gaps) on A− and find
errors on the cell interior with A+. The resulting error map for backpropagation
is ∆A = ∆A− + ∆A+.

In Equations 5.1 and 5.2 the affinity maps A denote the combination of vertical
(A(y)) and horizontal (A(x)) affinity maps. The affinity graphs contain one value
per edge between two neighboring pixels. A value close to 1 stands for high
affinity while 0 means unconnected.

Details on how the Malis criterion works internally can be found in the original
paper on Malis by Srinivas Turaga et al. [3]. The implementation is quite efficient
and does not contribute massively to the training time.

(a) Background prediction map (I−). (b) Foreground prediction map (I+).

Figure 5.2: Network predictions after a few training steps with Malis loss
(USK-Net, Section 3.5). The network can not separate membranes and

mitochondria yet. The images correspond to the data (forward) component of the
memory blob prob in Figure 5.1.

The error map ∆I+, which is derived from ∆A using the affinity layer during
backpropagation, is depicted in Figure 5.3. On a first look, it seems like only cell
interior errors, the light gray areas, exist in the picture.
When enhancing the contrast and marking errors in the membrane with red spots,
it becomes more clear what happens: The Malis criterion calculates minimum
spanning trees between pixels of the cell interior of two merged cells that should

33

5.3. New Layers

be separated. The edge that will be corrected is almost always the same between
two cells for all pixel pairs within those cells, due to shared edges in the spanning
tree. This edge will therefore accumulate a high error value in ∆A−, but there are
only a few such spots in every training patch.

On the cell interior errors (∆A+), the edges to be corrected occur on the border
of cell interior areas that are mislabeled as cell membrane. This leads to a denser
distribution of the error, but less error intensity per edge.

(a) Original error map (∆I+). Membrane
errors are sparse and barely visible.

(b) Contrast enhanced error map. Red
marks denote membrane errors.

Figure 5.3: The error map generated by the Malis loss. The image corresponds to
the diff (backward) component of the memory blob prob in Figure 5.1. The gray
background color is zero (no) error, while black spots are negative errors from

∆A− and light gray areas are positive errors from ∆A+.

Malis loss and the U/USK-Net models match perfectly: As the networks can out-
put very large patches up to 512 by 512 pixels without reaching memory limits of
current GPUs (see Section 6.4), connected components and the Malis loss have a
very large context to work on.
As soon as the patch size is so small that it barely covers a cell, Malis becomes
useless. With sliding window networks for example, it would be necessary to
compute many forwarding iterations first before being able to run Malis and gen-
erate an error map to backpropagate. It would also be necessary to retain all blobs
of all forwarding iterations. The whole process would not be efficient in terms of
memory consumption and training times.

5.3.3 Affinity

The affinity layer is an additional layer that has to be used in conjunction with
Malis loss (see Figure 5.1).

The idea is that not only affinity graphs but also pixelwise classifications can be

34

5.3. New Layers

learned with the Malis loss. During forwarding, the affinity layer has to look
at neighboring pixels in the horizontal and vertical direction of the input and
compute their connectivity (affinity).

A(x)
x,y = min

z=x,x+1
I+z,y (5.3)

A(y)
x,y = min

z=y,y+1
I+x,z (5.4)

M(x)
x,y = arg min

z=x,x+1
I+z,y (5.5)

M(y)
x,y = arg min

z=y,y+1
I+x,z (5.6)

In Equations 5.3 to 5.6, A(x) is the horizontal oriented affinity map, A(y) the vertical
one. The affinity maps have the same size as the input image I. Additionally, the
minimum index maps M(x) and M(y) have to be stored so that the loss can be
distribute accordingly during backpropagation.

The Softmax layer (blob prob) in Figure 5.1 and the ground truth labels (blob label a)
actually store both the foreground and background (see Figure 5.2). For the image
I used to produce the affinity map, only the foreground prediction map (I+) is
considered because it stores 1 for foreground (connected) and 0 for background
(disconnected). The resulting affinity graph will correctly have higher values for
connected pixels than disconnected ones.

The affinity graph is computed twice: Once for the ground truth (blob label affinity
in Figure 5.1) and once for the current network prediction (blob prob affinity).

During backpropagation, the affinity loss has to be attributed to single pixels again,
as the Malis criterion will attribute the error map to an affinity graph. Now, both
the foregound (∆I+) and background (∆I−) have to get an error map to balance
out the Softmax function. The loss is attributed symmetrically, ∆I+ = −∆I−.

Initialization:

∆I+
(x,y) = ∆I−

(x,y) = 0 (5.7)

(5.8)

Update:

∆I+
M(x)

x,y ,y
+ = ∆A(x)

x,y (5.9)

∆I−
M(x)

x,y ,y
− = ∆A(x)

x,y (5.10)

∆I+
x,M(y)

x,y
+ = ∆A(y)

x,y (5.11)

∆I−
x,M(y)

x,y
− = ∆A(y)

x,y (5.12)

35

5.4. OpenCL Backend

Equations 5.8 to 5.12 describe how to attribute the affinity loss back to pixel loss,
given the minimum index maps M(x) and M(y) computed in the forward pro-
cessing step.

There are also other ways to compute an estimation to an affinity graph, such
as averaging neighboring pixels. The choice for the minimum selection worked
particularly well because there is no loss of resolution or aliasing when computing
it this way. The Malis criterion selects the minimum edge of the affinity graph for
creating the loss maps ∆A(x) and ∆A(y). Thus using the minimum valued pixel
through M(x) and M(y) for attributing the pixel loss makes sense. Both objectives
minimize the same error by either increasing or decreasing the affinity of the
neighboring pixels.

5.3.4 Connected Components

The connected components layer is a small layer based on the OpenCV flood-
filling algorithm and outputs separated connected components from a foreground-
background labeled ground truth (Figure 5.4). Based on this map, the Malis loss
knows which areas have to be separated and which are connected. Here, the cell
membrane, which is considered background, is not assigned to any component.

Figure 5.4: Connected components belonging to Figure 5.2. The feature map
corresponds to the memory blob component in Figure 5.1.

5.4 OpenCL Backend

5.4.1 Implementation

In my version of the Caffe library, an additional versatile backend for various com-
pute devices, based on OpenCL and ViennaCL [19], is available. The backend is
called Greentea and is part of the Project Greentea consisting of frontend, models
and modified Caffe library (see Figure 1.3). In this section, an overview of interest-
ing aspects how the backend works and how the Caffe library had to be changed

36

5.4. OpenCL Backend

is given. Further details and a full documentation is available within the source
code, which is available for download [5].

A key feature is that the OpenCL backend is feature equivalent to the CUDA
backend. All GPU layers can be used on both backends. The OpenCL backend
is also unit test verified and passes all test cases of the original Caffe library. The
tests can be invoked by executing “make runtest” on the source code folder.

It remains possible to compile the library with support for all backends at once.
The compute kernel and BLAS calls can be dispatched dynamically at runtime,
depending on what kind of device is selected. Every device available is registered
in a new DeviceContext object that stores the device and backend type.

The following aspects of the library had to be changed:

• The Caffe library enumerates all devices on all enabled backends, starting
with CUDA devices. The selected GPU number determines which Device-
Context is set as the default.

• The SyncedMem class that is used to manage the device memory can now
store either a CUDA GPU pointer or an OpenCL cl mem memory object,
depending on which device and backend the memory object belongs to.

• The Forward gpu and Backward gpu functions now contain both OpenCL and
CUDA code to call compute kernels and BLAS functions.

• Network layers, SyncedMem and blob objects carry a pointer to a DeviceCon-
text, which allows to express neural network object to device relationships.
This is a feature for allowing future multi-device networks, where keeping
track of which memory blob is on which device is essential.

• All CUDA compute kernels are translated to OpenCL code. This is trivial
for the most part, as the syntax is very similar.

• The OpenCL backend can dispatch BLAS calls to ViennaCL-BLAS or clBLAS
on GPUs. ViennaCL-BLAS is header-only and therefore easier to use, while
clBLAS is optimized for certain AMD GPUs but has to be compiled separ-
ately.

• On CPU devices, the Greentea backend mixes native CPU code with OpenCL
code to achieve an optimal performance (see Section 5.4.2).

5.4.2 OpenCL Hybrid

The OpenCL hybrid implementation describes how the OpenCL backend is used
when selecting a CPU device instead of a GPU device. The two fundamental
differences are memory allocation and BLAS library calls.

When a SyncedMem object is instantiated, the memory is allocated as host memory
rather than device memory. Differently than with the CPU backend, the memory
is allocated through OpenCL. This allows to access the underlying memory pointer
of OpenCL memory objects while also being able to use the memory in OpenCL
kernels.

37

5.5. Convolution Methods

For BLAS calls, the following steps are executed:

1. For all involved cl mem memory objects, the underlying host pointer is re-
covered and mapped to a new CPU pointer. At this point, the OpenCL
backend ensures all compute kernels accessing the memory concurrently are
done executing so that it is safe to access the memory over CPU pointers.

2. The BLAS call is dispatched to a cBLAS library (Intel MKL, ATLAS or Open-
BLAS). Here, the most optimized BLAS for the CPU device can be selected.
Optimally, it should be a BLAS that is fully parallelized and uses all CPU
cores. NUMA issues (see Section 6.7) might occur.

3. As soon as the BLAS call returns, all CPU pointers are unmapped. This
signals to the OpenCL backend that it is safe again to start OpenCL kernels
on the cl mem objects involved.

When mapping cl mem objects, it can be specified that the access is read-only. In
this case, OpenCL kernels that also only use the object in read-only mode can
continue to run during the BLAS call.

Using the OpenCL backend on CPUs is a design decision. An alternative would
be to parallelize the existing CPU backend with OpenMP pragmas. However, as
most of the computational complexity resides with the BLAS calls (see Section
5.5) and the OpenCL kernels are not using local memory extensively, they run
very well also on CPUs. Only the BLAS, which is very device specific, and needs
to be optimized for the memory architecture (see Section 6.3), needs to be different
from the GPU version of the OpenCL backend.

5.5 Convolution Methods

Convolutions are usually computed using three different methods:

1. GEMM (matrix multiplication) convolutions, requiring a reshape of the input
to fit the BLAS SGEMM scheme.

2. Direct convolutions, shifting the convolution kernel directly over the input.

3. FFT domain convolutions, requiring to compute at least two Fourier trans-
forms and one inverse Fourier.

Caffe implements GEMM convolutions. The advantage is that highly efficient
BLAS libraries are available specifically for various devices, such as clBLAS, cuBLAS
and OpenBLAS. It is very hard to implement convolutions more efficiently using
direct convolution. The performance of such implementations is not portable for
different kernel sizes and hardware types. In my own preliminary experiments,
not even 10 % efficiency could be reached in the ip1 layer of SK-Net, compared to
up to 90 % using GEMM convolution, including the time for input reshaping (see
Section 6.6.1, Table 6.6 and Figure 6.6).

It is particularly difficult to get good local and global memory access patterns
when programming kernels for direct convolution. BLAS libraries have already
been optimized to use GPU local memory and CPU caches optimally.

38

5.5. Convolution Methods

GEMM convolutions also simplify the implementation of higher dimension and
strided kernel convolutions, as only the code for reshaping the input has to be
adapted. In Caffe, these functions are called im2col and col2im.

A huge disadvantage with GEMM convolution is the memory requirement for the
convolution buffer, discussed in Section 6.4. Assuming square sized kernels and
output images, Equation 5.13 gives the buffer size in float elements. The kernel
and output dimension is denoted by x. The network architectures in this report
all use x = 2 (2D).

Mbuffer = fin · kx · wx = K · N (5.13)

A matrix multiplication consists of three matrices, A ∈ RM×K, B ∈ RK×N and
C ∈ RM×N . In Caffe, A is the weight matrix, B the column data after im2col and
C = A · B the layer output.

The dimensions are M = fout, N = wx and K = kx · fin. The resulting computa-
tional complexity is O(M · N · (2 · K− 1)) = O(fout · wx · (2 · fin · kx − 1)).

A

K = kx · fin

M
=

f o
ut

· B

N = wx

K
=

kx
·f

in

= C

N = wx

M
=

f o
ut

Figure 5.5: Matrix-matrix multiplication in Caffe.

In the BLAS libraries, row-major NN-SGEMM has to be used. Row-major means
the leading dimension in memory is the matrix row. NN means that the matrices
A and B are both not transposed. SGEMM stands for single precision general
matrix matrix multiplication.

In the scope of this project, FFT convolutions have not been considered. There
were no suitable FFT libraries available for all devices that needed to be supported.
Normal FFT convolution also uses a lot of additional memory, as all kernels are
stretched to the size of the input in Fourier space. The device memory is typically
insufficient (see Section 6.2) to store all FFT kernels for reuse, and recomputing
every kernel is too time intensive.

The cuDNN library also implements a modified form of GEMM convolutions, and
they also evaluated FFT and direct convolution as options [20]. A recent paper
about using fast FFT convolutions exists (Vasilache et al. [21]), but managing the
device memory remains difficult.

39

Chapter 6

Benchmarks

6.1 Introduction

This chapter assesses the performance (or efficiency) of different models across a
variety of hardware devices. This is essential for speeding up neural networks by
finding and eliminating computation and memory bottlenecks.
All theoretical computations in this chapter assume two dimensional square sized
compute kernels and feature maps. This is in accordance to how the network
architectures are set up (see Chapter 3).

6.2 Hardware

Vendor AMD nVidia Intel Intel
Device W9100 GTX 980 i7-4790K 2x E5-2697v3
Compute Units 44 (2816) 16 (2048) 4 (8) 28 (56)
(Shaders) / (Threads)
Memory (GiB) 16 4 16 >16
Clock Frequency (MHz) 930 1126 4000 2600
Performance (GFLOP/s) 5240.0 4612.0 512.0 2329.6
Memory Speed (GiB/s) 320 224 25.6 2x 68

Table 6.1: Hardware used for benchmarking.

The device specifications in Table 6.1 are taken from the official white papers
(AMD [22], nVidia [23], Intel ARK [24]). The FLOP/s performances indicated
assume the fused-multiply-add (FMA) operation.

The two AMD W9100 graphics cards have kindly been sponsored by AMD [25],
as noted in the acknowledgments. The card has special features such as high
64 bit precision performance and error correcting memory. Those were not used
for Caffe, only the OpenCL 2.0 driver and the large amount of memory was of
importance. The W9100 is a workstation card, but consumer cards from both
nVidia and AMD can also be used without restrictions as long as there is enough

40

6.3. Software

device memory (R9 290X, R9 390X, Titan, Titan X). This is to be considered when
building low-cost, high-throughput systems for neural networks.

The i7-4790K CPU and GTX 980 GPU are devices of my personal workstation,
specially acquired to test with up to date hardware (as of 2015).
Extended testing with the E5-2697v3 processors and its issues (see Section 6.7)
was not possible as this device was a workstation that I could only access briefly
during my time at HHMI Janelia.

For all benchmarks in this chapter, the W9100 GPUs have been used, because
they were the only available GPUs capable of running all models in forward- and
backward-mode on a wide range of output sizes, due to memory requirements.
The only exceptions to this are the hardware comparison benchmarks and where
indicated explicitly.

Unless otherwise noted, Intel is used as an alias for the i7-4790K processor, nVidia
for the GTX 980 GPU and AMD for the W9100 GPU in this chapter.

6.3 Software

The modified version of Caffe [5] in Project Greentea supports a variety of con-
figurations that perform differently depending on the compute device. Table 6.2
represents the setup used for benchmarking. It is the best performing setup pos-
sible for each combination of backend and device for the models in Chapter 3.

Device Backend Memory Allocation BLAS Compute Kernels
Intel CPU Host (native) OpenBLAS Caffe (CPU native)
Intel OpenCL Host (OpenCL) OpenBLAS Greentea (OpenCL)
AMD OpenCL Device (OpenCL) clBLAS Greentea (OpenCL)
nVidia OpenCL Device (OpenCL) clBLAS Greentea (OpenCL)
nVidia CUDA Device (CUDA) cuBLAS Caffe (CUDA)

Table 6.2: Software configuration used for benchmarking.

OpenBLAS is compiled to use all CPU cores through OpenMP and supports all
vector extensions available on the CPUs used. Alternatively, the cBLAS header
interface also supports Intel MKL and ATLAS as replacements for OpenBLAS.
The CPU could also be used with clBLAS. This is not advisable, as clBLAS is op-
timized for GPUs, which have a different memory architecture than CPUs. While
there is a cache hierarchy on the CPU, the GPU needs to use fast local memory
to buffer blocks of the matrix (from global device memory) temporarily. Local
memory does not exist on the CPU, therefore it would result in copying data need-
lessly on the host memory. This results in low efficiency, because CPUs already
have a slow memory interface compared to GPUs (see Table 6.1).
As ViennaCL [19] was used as a part of the OpenCL backend, ViennaCL-BLAS
is also available as an alternative to clBLAS. It is slower than clBLAS, but more

41

6.4. Device Memory

convenient to use as it does not need to be compiled separately and only consists
of C++ header files.

6.4 Device Memory

As all networks presented can be run with almost any size of output (up to re-
strictions given by layers such as even divisibility of the input feature maps, see
Chapter 3), the networks can be set up so that they fit the memory and computa-
tional restrictions given by each device. The networks do not have to be re-trained
in this case and results are numerically identical.
A second objective may be to use processing output sizes matching the dataset:
Non-square outputs such as 256 by 32 pixels are also possible. Then, the sizes
can be set so that the image sizes to process are divisible by the output size of the
network. Like that, no computations are wasted.

It is also important to note that there is no easy scaling rule as to how the memory
requirements will change with different output sizes as this depends on the num-
ber of feature maps and their sizes on all layers as well as the maximum convolu-
tion buffer size (Mbuffer).

An upper bound estimation for w� v is that the memory usage increases propor-
tional to w2, where w is the output size and v the total padding size as in Table
6.3.
It follows that the network gets more efficient with a bigger ratio w

v , removing
more overlapping computations. Using w = 1 on the SK network for example
results in having the same efficiency as a minibatch sliding window (SW) network,
which is about 50 times slower (see Table 6.5) than the corresponding SK network
with 128 by 128 output.

On 3D networks, the memory allocation would scale in the order of w3, limiting
the output patch-cube size very quickly.

The smallest memory available in the test hardware was 4 GiB (see Table 6.1),
thus the networks have been set up as in Table 6.3 for forward processing. The
configurations are the same as for training and as described in Chapter 3, except
for the USK net, where half the size was used (256 instead of 512). The resulting
memory requirements are visible in Figure 6.1 and Table 6.4.

Training the USK model with 512× 512 pixels, which improves training with Malis
loss, requires up to 8 GiB of device memory, which is close to what scaling propor-
tional to w2 predicts.

Network SK USK U
Processing output size (w× w) 128× 128 256× 256 388× 388
Training output size (w× w) 128× 128 512× 512 388× 388
Total padding size (v) 102 180 184

Table 6.3: Output and padding configurations in pixels. Output sizes are mostly
flexible, but the padding size is a fixed network characteristic.

42

6.4. Device Memory

Network SK USK U
Data Blobs (MiB) 219 560 1134
Processing (MiB) 2759 1621 1710
Training (MiB) 3056 2204 2955

Table 6.4: Peak device memory usage when using the processing output sizes
denoted in Table 6.3 for both processing and training.

SK USK U
CNN Architecture

0

1000

2000

3000

4000

5000

P
e
a
k

d
e
v
ic

e
 m

e
m

o
ry

 [
M

iB
]

2
1

9 5
6

0

1
1

3
4

2
7

5
9

1
6

2
1

1
7

1
0

3
0

5
6

2
2

0
4

2
9

5
5

Data Blobs
Processing
Training

Figure 6.1: Peak device memory usage when using the processing output sizes
denoted in Table 6.3 for both processing and training. The comparison reveals

that SK networks would use a lot more memory than USK and U with the same
output size, while USK and U are roughly comparable.

The memory usage during training is always higher than the processing require-
ments. This is because the error / difference is stored during back propagation.
The data blobs therefore have to be stored twice (data and difference) for all layers
that are back propagated - making the difference between training and processing
roughly the size of the data blobs, as can be seen in Figure 6.1.

With SK and USK models, data, difference and weights are the smallest contribut-
ors to memory usage. The biggest consumption comes from the temporary buffer
needed to compute convolutions with matrix multiplications. The effect is much
smaller with U-Net architectures.
To assess this, the size of the buffer can be estimated:

Mbuffer = max
l(i)∈Lconv.

f (i)in (k(i))2(w(i))2 (6.1)

The size of Mbuffer is in floating point elements. To get an estimate in bytes, it has

43

6.4. Device Memory

to be multiplied by the GPUs floating point precision size, which is typically 4
bytes.

The maximum buffer allocation that worked with OpenCL and CUDA was 4 GiB
for a single memory block. This is the upper limit for Mbuffer. With the most
expensive convolution in the ip1 layer of SK-Net (see Section 6.6.1), it is possible
to compute the limits for the network output size w, according to Equation 6.1.
fin = 192, fout = 1024 and k = 10 are fixed network parameters. Thus, the

maximum is w =
√

4 GiB
4 B · (192 · 102)−1 ≈ 236 pixels.

For U-Net, this buffer is not the dominant factor that limits the network. In the
USK-Net design, the ip1 layer is of less importance and has less input feature maps
and a smaller kernel size. This reduces the Mbuffer limitation and allows bigger
output patches, making the network more efficient.

With the OpenCL backend (Section 5.4), the memory overhead is up to min(n, q) ·
Mbuffer, where q is the number of parallel work queues and n the minibatch size.
This helps to speed up the many small convolutions that occur in SW networks
by starting up to q convolutions in parallel. This feature can not be used with
the CUDA and CPU backend. For CUDA, the solution in this case is to use
cuDNN, which streams the convolutions in batches to be more efficient [20]. Both
parallel queues and cuDNN are not of importance here, because the SK, U and
USK architectures all work efficiently with having n = 1.

Reusing the convolution buffer is also a new feature in the improved Caffe library
[5]. With the original Caffe library [6], the memory overhead would have been
much higher, allocating one buffer per convolution layer:

Mbuffer = ∑
l(i)∈Lconv.

f (i)in (k(i))2(w(i))2 (6.2)

Those buffers are in both cases persistent, because freeing them and re-allocating
would cause too much run time overhead. With re-using the buffer, it would
also not decrease the peak allocation any further. Alternative ways to implement
convolutions are discussed in Section 5.5.

The memory consumption can not be decreased further during training, because
the data blobs have to persist during forward- and backward-computation to calcu-
late the difference and update the weights in training. However, during processing,
a lower bound estimate is given by:

Mtotal = min(n, q) ·Mbuffer + n · max
b(i−1)∈B, b(i)∈B

[f (i)in (w(i−1))2 + f (i)out(w
(i))2] (6.3)

This assumes that the blobs B of a network are not persistent and at most the input
and output of the most memory consuming layer has to be stored. A network with
its blobs can be seen as a directed acyclic graph (DAG). Therefore, the estimate is
higher if there are layers / blobs that exist in parallel with each other.
Currently (as of August 2015) there is no Caffe implementation that re-uses the
blobs in this way. It would be necessary to analyze the DAG when instantiating
the network first. Then, blobs would have to be allocated and assigned so that no

44

6.5. Labeling Throughput

conflicts exist. The DAG would need to be split up for analysis in the case that
there are multiple devices with independent memory working on different parts
of the network.

The implication is that lower end devices such as GPUs with less memory and
even mobile devices would be capable of classifying with larger networks such as
those presented in this report.
I chose to not implement this because there was enough GPU memory available
and Figure 6.1 indicates the reduction would not be very large, as most memory
is consumed by matrix-matrix multiplication buffer (Mbuffer).

6.5 Labeling Throughput

Device Backend SW SK USK U
Intel CPU 73 0(a) 0(a) 0(a)

Intel OpenCL 98 3 504 19 414 32 692
nVidia OpenCL 850 28 461 267 478 390 156
AMD OpenCL 1 108 59 513 354 865 483 766
nVidia CUDA 1 488 85 460 658 018 1 058 125

Table 6.5: Labeling throughput
(a) not implemented

The labeling throughput (Table 6.5) is an overall performance measure for neural
networks. It also shows how different devices and backends perform. Even on the
CPU, using the fastest network (U) gives a speedup of 447× compared to what
was achievable with Caffe [6] prior to Project Greentea [5]. When using a network
(SK) that gives identical results as the original SW network, the CPU speedup is
still a factor of 48×.

On AMD GPUs, speedups of 54× (SK-Net), 437× (U-Net) and 320× (USK-Net)
compared to SW-Net are possible. The nVidia GPU scales similarly on both the
OpenCL (SK: 33×, U: 459×, USK: 315×) and CUDA (SK: 57×, U: 711×, USK:
442×) backend.

SK, USK and U networks can not be executed directly on the legacy CPU backend,
as layers such as strided kernel layers and merge crop have no native CPU kernels
implemented. They are only available on CUDA and OpenCL. The fact that the
OpenCL backend on CPUs is better parallelized (see Section 5.4.2) than native
CPU execution in Caffe and that the speedups between networks are similar on
CPUs and GPUs justifies not implementing the CPU kernels.

Figures 6.2 and 6.3 represent the values of Table 6.5 in both logarithmic and linear
scale.

While the CUDA backend is usually the fastest, the nVidia GPU performs slower,
as expected by the FLOP values in Table 6.1, relative to the AMD GPU when
using OpenCL on both of them. Explaining this behavior needs insight into the

45

6.5. Labeling Throughput

individual network layer performance (Section 6.6) and the convolution operations
(Section 5.5).

SW SK USK U
CNN Architecture

0

100

101

102

103

104

105

106

107

108

109
La

b
e
l
th

ro
u
g
p
u
t

[p
ix

e
l
la

b
e
ls

/s
]

7
3

0 0 0

9
8

3
5

0
4 1
9

4
1

4

3
2

6
9

2

8
5

0

2
8

4
6

1 2
6

7
4

7
8

3
9

0
1

5
6

1
1

0
8

5
9

5
1

3

3
5

4
8

6
5

4
8

3
7

6
6

1
4

8
8

8
5

4
6

0 6
5

8
0

1
8

1
0

5
8

1
2

5

Intel CPU
Intel OpenCL
nVidia OpenCL
AMD OpenCL
nVidia CUDA

Figure 6.2: Log scaled labeling throughput

SW SK USK U
CNN Architecture

0

200000

400000

600000

800000

1000000

1200000

1400000

La
b
e
l
th

ro
u
g
p
u
t

[p
ix

e
l
la

b
e
ls

/s
]

7
3

0 0 09
8 3
5

0
4

1
9

4
1

4

3
2

6
9

2

8
5

0

2
8

4
6

1

2
6

7
4

7
8

3
9

0
1

5
6

1
1

0
8

5
9

5
1

3

3
5

4
8

6
5

4
8

3
7

6
6

1
4

8
8 8
5

4
6

0

6
5

8
0

1
8

1
0

5
8

1
2

5Intel CPU
Intel OpenCL
nVidia OpenCL
AMD OpenCL
nVidia CUDA

Figure 6.3: Linear scaled labeling throughput

The network performance during training was not assessed in this report, as train-
ing the models on the available data was not a limiting objective. Back propagation

46

6.6. Layer Performance Analysis

is usually slower than forwarding, as the differential maps, gradients and weight
updates have to be computed.

6.6 Layer Performance Analysis

This section takes apart the neural networks down to individual layers to assess
why certain networks are faster than others and find potential to optimize models.

Data
Convolution
Pooling
Upconvolution
Activation
Other

Figure 6.4: Layer-wise analysis legend.

6.6.1 SK-Net

16: prob
0.15 ms, 0.06%

15: ip3
1.57 ms, 0.56%

14: relu5
0.56 ms, 0.20%

13: ip2
10.02 ms, 3.61%

12: relu4
0.97 ms, 0.35%

11: ip1
230.56 ms, 83.01%

10: pool3
1.96 ms, 0.71%

9: relu3
0.53 ms, 0.19%

8: conv3
9.63 ms, 3.47%

7: pool2
1.56 ms, 0.56%

6: relu2
0.49 ms, 0.18%

5: conv2
14.64 ms, 5.27%

4: pool1
1.00 ms, 0.36%

3: relu1
0.34 ms, 0.12%

2: conv1
3.49 ms, 1.25%

1: silence
0.02 ms, 0.01%

0: data
0.27 ms, 0.10%

Figure 6.5: Layer-wise timings of SK-Net.

Looking at Figure 6.5, the convolution layers and especially the ip1 layer (83 %) are
responsible for the overall performance. There are many input (192) and output
(1024) feature maps (see Section 3.3) and therefore a high computational complex-
ity (O(fout · w2 · (2 · fin · k2 − 1))) (see Section 5.5) on the ip1 layer.

As the convolution layers only consist of a fast memory copy operation to ar-
range the data, so that matrix-matrix multiplications through an optimized BLAS
become possible, and the SGEMM (single precision general matrix-matrix multi-

47

6.6. Layer Performance Analysis

plication) call itself, the efficiency values in Table 6.6 and Figure 6.6 are direct
proxies for how efficient the BLAS works on the devices.

Layers that operate with complexity O(fin · w2), which includes all other layers
used in the SK, USK and U networks, only contribute a small fraction to the total
forwarding time (less than 1 % per layer).

Layer GFLOP AMD OCL nV OCL nV CUDA Intel OCL
conv1 0.70 3.83 % 8.79 % 13.84 % 6.16 %
conv2 14.06 18.33 % 27.13 % 56.45 % 12.89 %
conv3 18.40 36.46 % 22.05 % 21.78 % 18.14 %
ip1 644.23 53.32 % 27.15 % 90.50 % 34.83 %
ip2 17.17 32.72 % 23.83 % 62.15 % 22.35 %
ip3 0.03 0.41 % 0.75 % 0.75 % 0.12 %

Table 6.6: FLOP efficiency for the convolution layers in the SK-Net. The values
are relative to Table 6.1 FLOP performances.

co
n
v
1

co
n
v
2

co
n
v
3

ip
1

ip
2

ip
3

Layer

0

100

200

300

400

500

600

700

O
p
e
ra

ti
o
n
s

[G
FL

O
P
]

GFLOP

0

10

20

30

40

50

60

70

80

90

100

E
ff

ic
ie

n
cy

 [
%

]

AMD OpenCL
nVidia OpenCL

nVidia CUDA
Intel OpenCL

Figure 6.6: FLOP efficiency of the convolution layers in the SK-Net.

Even though ip1 is the most expensive layer, it also is the most efficient (see Figure
6.6) on all devices, when using the BLAS which is most optimized. This means

48

6.6. Layer Performance Analysis

clBLAS for AMD, cuBLAS for nVidia and OpenBLAS for Intel.

It is important to note that clBLAS is not yet as optimized as cuBLAS for this type
of matrix-matrix multiplications (see Section 5.5). Both GPUs currently perform
worse than expected with the OpenCL backend. As both clBLAS and the Project
Greentea are still quite recent projects, the performance is expected to increase with
further optimizations in the future.

Other convolution layers are over 30 times less expensive and down to half as
efficient. With small convolutions, the memory copy and kernel launch overhead
lower the efficiency. Very small convolutions such as ip3 and conv1 may also not
fully utilize the many threads available on GPUs (see Table 6.1). As the ineffi-
cient layers have short computation times here, they are not very important in
optimization.

Only if the network mostly consists of such inefficient layers (which is not the
case with SK-Net, but does apply to SW-Net), the number of feature maps and
convolution sizes should be increased, if it improves the segmentation. Using
minibatches (n > 1) can increase the GPU utilization on OpenCL when using
multiple queues (q > 1) and the efficiency on CUDA when using cuDNN [20].

6.6.2 U-Net

56: conv22
10.87 ms, 3.48%

54: conv21
20.75 ms, 6.64%
53: mergecrop4

4.07 ms, 1.30%
52: conv20

2.89 ms, 0.93%
51: upconv4

9.78 ms, 3.13%
49: conv19

9.22 ms, 2.95%
47: conv18

18.14 ms, 5.80%
46: mergecrop3

2.20 ms, 0.71%
45: conv17

2.73 ms, 0.87%
44: upconv3

7.33 ms, 2.34%
42: conv16

8.39 ms, 2.68%
40: conv15

17.01 ms, 5.44%
38: conv14

3.08 ms, 0.98%
37: upconv2

9.45 ms, 3.02%
35: conv13

12.10 ms, 3.87%
33: conv12

25.84 ms, 8.27%

31: conv11
3.65 ms, 1.17%

30: upconv1
16.21 ms, 5.19%

28: conv10
11.47 ms, 3.67%

26: conv9
6.91 ms, 2.21%

22: conv8
14.27 ms, 4.56%

20: conv7
8.06 ms, 2.58%

16: conv6
12.99 ms, 4.15%

14: conv5
7.57 ms, 2.42%

10: conv4
16.47 ms, 5.27%

8: conv3
10.00 ms, 3.20%

4: conv2
21.68 ms, 6.94%

2: conv1
7.25 ms, 2.32%

Figure 6.7: Layer-wise timings of U-Net, excluding layers that contribute less
than 0.5 % of the total forwarding time.

49

6.6. Layer Performance Analysis

Layer GFLOP AMD OCL nV OCL nV CUDA Intel OCL
conv1 1.10 2.90 % 6.58 % 7.69 % 5.50 %
conv2 23.77 20.92 % 19.54 % 43.92 % 7.60 %
conv3 11.72 22.35 % 26.10 % 53.21 % 19.15 %
conv4 23.11 26.78 % 22.90 % 58.79 % 13.35 %
conv5 11.23 28.31 % 29.78 % 63.92 % 23.50 %
conv6 21.81 32.06 % 24.70 % 73.71 % 24.66 %
conv7 10.27 24.32 % 32.31 % 77.68 % 40.24 %
conv8 19.33 25.85 % 24.91 % 88.07 % 42.55 %
conv9 8.49 23.44 % 32.93 % 76.82 % 54.12 %
conv10 14.80 24.62 % 25.05 % 84.03 % 54.30 %
conv11 3.29 17.17 % 26.57 % 78.12 % 38.53 %
conv12 27.52 20.33 % 32.39 % 67.04 % 40.50 %
conv13 12.76 20.12 % 23.86 % 75.78 % 43.25 %
conv14 2.83 17.56 % 24.03 % 71.13 % 28.54 %
conv15 24.54 27.54 % 29.25 % 71.21 % 22.74 %
conv16 11.79 26.83 % 24.10 % 75.04 % 25.90 %
conv17 2.62 18.29 % 21.74 % 61.10 % 23.22 %
conv18 23.12 24.32 % 27.82 % 62.06 % 16.63 %
conv19 11.32 23.43 % 21.69 % 59.62 % 13.79 %
conv20 2.51 16.54 % 19.09 % 39.84 % 17.82 %
conv21 22.42 20.62 % 23.77 % 45.12 % 10.44 %
conv22 11.09 19.47 % 18.84 % 43.50 % 8.09 %
ip1 0.04 0.79 % 1.84 % 2.40 % 0.35 %

Table 6.7: FLOP efficiency for the convolution layers in U-Net. The values are
relative to Table 6.1 FLOP performances.

In the U-Net, most convolutions have the same order of magnitude in complexity
(see Table 6.7). The result is a very balanced network in terms of forward tim-
ings (see Figure 6.7). The balancing comes from trading feature map size against
feature map count towards the middle of the network.

The upconvolution layers contribute each up to 5.2 % of the network forward-
ing time. This is less efficient than the optimum as only 4-nearest neighbor in-
terpolation with constant weights is computed. This would not be more effort
than a memory copy operation during forwarding and accumulating of the four
nearest neighbor values during backward computation. Currently, it is implemen-
ted using a Caffe deconvolution, which is a reversed convolution layer. This layer
already existed in Caffe, while no direct upsampling of feature maps is implemen-
ted. The convolution kernels are grouped, meaning each upsampling kernel only
considers a single feature map. One advantage is that the deconvolution layer also
allows adaptive weights and other interpolations such as bilinear upsampling.

50

6.6. Layer Performance Analysis

co
n
v
1

co
n
v
2

co
n
v
3

co
n
v
4

co
n
v
5

co
n
v
6

co
n
v
7

co
n
v
8

co
n
v
9

co
n
v
1
0

co
n
v
1
1

co
n
v
1
2

co
n
v
1
3

co
n
v
1
4

co
n
v
1
5

co
n
v
1
6

co
n
v
1
7

co
n
v
1
8

co
n
v
1
9

co
n
v
2
0

co
n
v
2
1

co
n
v
2
2

ip
1

Layer

0

5

10

15

20

25

30

O
p
e
ra

ti
o
n
s

[G
FL

O
P
]

GFLOP

0

10

20

30

40

50

60

70

80

90

100

E
ff

ic
ie

n
cy

 [
%

]

AMD OpenCL
nVidia OpenCL

nVidia CUDA
Intel OpenCL

Figure 6.8: FLOP efficiency of the convolution layers in U-Net.

6.6.3 USK-Net

28: ip3
0.60 ms, 0.32%

27: relu9
0.23 ms, 0.12%

26: conv8
10.00 ms, 5.39%

25: relu8
0.42 ms, 0.23%

24: conv7
20.57 ms, 11.10%
23: mergecrop1

3.26 ms, 1.76%
22: conv6

3.58 ms, 1.93%
21: upconv1

11.06 ms, 5.96%
20: relu7

0.26 ms, 0.14%
19: ip2

3.59 ms, 1.94%
18: relu6

0.54 ms, 0.29%

17: ip1
58.90 ms, 31.77%

16: pool4
1.08 ms, 0.59%

15: relu5
0.39 ms, 0.21%

14: conv5
14.49 ms, 7.81%

13: pool3
1.21 ms, 0.65%

12: relu4
0.39 ms, 0.21%

11: conv4
15.42 ms, 8.32%

10: pool2
1.32 ms, 0.71%

9: relu3
0.38 ms, 0.21%

8: conv3
18.51 ms, 9.99%

7: pool1
0.75 ms, 0.40%

5: relu2
0.59 ms, 0.32%

4: conv2
12.18 ms, 6.57%

3: relu1
0.63 ms, 0.34%

2: conv1
4.87 ms, 2.62%

Figure 6.9: Layer-wise timings of USK-Net, excluding layers that contribute less
than 0.1 % of the total forwarding time.

51

6.6. Layer Performance Analysis

Layer GFLOP AMD OCL nV OCL nV CUDA Intel OCL
conv1 0.64 2.51 % 4.97 % 7.08 % 5.43 %
conv2 13.75 21.55 % 19.25 % 42.11 % 8.04 %
conv3 26.25 27.06 % 20.14 % 62.58 % 11.73 %
conv4 21.81 26.99 % 21.78 % 62.61 % 12.57 %
conv5 18.92 24.93 % 27.45 % 63.93 % 13.06 %
ip1 141.76 45.93 % 31.25 % 86.64 % 27.82 %
ip2 4.43 23.53 % 28.14 % 72.69 % 42.59 %
conv6 4.42 23.56 % 21.29 % 63.39 % 31.44 %
conv7 29.44 27.31 % 27.88 % 61.29 % 17.26 %
conv8 9.66 18.44 % 20.45 % 46.17 % 7.34 %
ip3 0.02 0.53 % 1.73 % 1.73 % 0.36 %

Table 6.8: FLOP efficiency for the convolution layers in USK-Net. The values are
relative to Table 6.1 FLOP performances.

co
n
v
1

co
n
v
2

co
n
v
3

co
n
v
4

co
n
v
5

ip
1

ip
2

co
n
v
6

co
n
v
7

co
n
v
8

ip
3

Layer

0

20

40

60

80

100

120

140

160

O
p
e
ra

ti
o
n
s

[G
FL

O
P
]

GFLOP

0

10

20

30

40

50

60

70

80

90

100

E
ff

ic
ie

n
cy

 [
%

]

AMD OpenCL
nVidia OpenCL

nVidia CUDA
Intel OpenCL

Figure 6.10: FLOP efficiency of the convolution layers in USK-Net.

In the USK network, the ip1 layer is again the most expensive and efficient one,
but the network is more balanced as ip1 only contributes 32 % of the forwarding
time, compared to 83 % in the original SK-Net. Efficiency and forwarding times
are, as expected, a mixture of the SK- and U-Net.

52

6.7. NUMA Issues

Except for ip3 and conv1, all layers have a relatively high efficiency. The inefficient
layers go from fin = 64 to fout = 2 and fin = 3 to fout = 64 respectively. This
will directly result in matrix multiplications with matrices that have strongly non-
square shapes and are therefore less efficient (see Section 5.5).

6.7 NUMA Issues

An issue that came up testing the OpenCL hybrid backend (see Section 5.4.2) was
that the performance did not scale as expected with systems that have more than
one CPU. Such systems have non-unified memory access (NUMA) because the
CPUs share one address space for memory, but every processor has its own cache
and memory interface. Accessing data across the other CPU comes with a large
performance penalty. Compute kernels, such as the matrix-matrix multiplication
in the BLAS library or the custom OpenCL kernels, cause the threads to work on
adjacent data. This means a write operation of one CPU is likely to invalidate
cache lines across both CPUs. At this point, the synchronization overhead seems
to become larger than any speedup of having additional cores working on the
algorithms.

Layer i7-4790K 2x E5-2697v3 Speedup
conv1 22.19 ms 47.02 ms 0.47
relu1 2.68 ms 5.08 ms 0.53
pool1 14.65 ms 17.17 ms 0.85
conv2 213.16 ms 176.96 ms 1.20
relu2 4.94 ms 14.04 ms 0.35
pool2 40.06 ms 44.40 ms 0.90
conv3 198.15 ms 238.91 ms 0.83
relu3 5.85 ms 17.45 ms 0.34
pool3 57.08 ms 59.05 ms 0.97
ip1 3612.29 ms 4168.21 ms 0.87
relu4 13.59 ms 47.62 ms 0.29
ip2 150.03 ms 187.05 ms 0.80
relu5 5.90 ms 24.10 ms 0.24
ip3 56.25 ms 77.51 ms 0.73
prob 0.48 ms 4.88 ms 0.10

Table 6.9: 4 core i7-4790K versus 2 CPU 28 core (NUMA) E5-2697v3, comparing
SK network layerwise forward timings.

Each CPU has 14 cores, which gives 28 cores for the whole system. The number of
threads for the frontend was set to 14, which gave the best performance by keep-
ing at least the BLAS library temporarily tied to one processor by the operating
system’s scheduler. The OpenCL backend, which also allocates the memory, used
56 threads and allocated memory on both interfaces.
Table 6.9 shows the impact of having NUMA issues, taking the SK network as

53

6.7. NUMA Issues

an example. The layers are all sufficiently parallelized, which is evident when
looking at Figure 6.6. Differences of the CPU architectures are also not a possible
explanation as both processors are based on the same instruction sets and gen-
eration. The memory interface should also be fast enough to keep up with the
computations (see Table 6.1).

Correcting for processor frequency, the speedup should be up to a factor 4.55×
using all 28 cores (ReLU and pooling layers) and up to 2.275× using only one pro-
cessor (inner product and convolution layers). The effective speedups measured
are much slower:

• Speedups between 0.1× and 0.97× on element-wise layers with complex-
ity up to O(fin · w2). Cache invalidation between the two processors (28
cores) seems to be dominant. The element-wise kernels run on the OpenCL
backend.

• Speedups between 0.47× and 1.20× on convolution layers with complexity
up to O(fout ·w2 · (2 · fin · k2− 1)) (matrix-matrix multiplication). The effects
of OpenBLAS running on 14 cores and sub optimal memory allocations are
dominant. It is a proxy for how the matrix-matrix multiplications used in all
convolutions perform.

To get the expected speedup, the two processors need to be presented to the Caffe
library as two separate devices. Then the library can be used in two individual
instances. As the OpenCL hybrid backend uses two separate parallelization mech-
anisms (OpenCL kernels and a parallelized BLAS), two solutions would need to
be applied:

• The Caffe frontend needs to be tied to the cores of one CPU, so that the BLAS
library does not show NUMA issues.

• The OpenCL backend needs to split up the processor setup into sub-devices
using device fission. The splitting rule needs to be that all cores belonging
to one processor (tested by cache affinity) are tied to the same sub-device.
Only one is then used per Caffe instance. Device fission is an extension to
OpenCL that is already available (cl ext fission [26]).

• The cores used in the frontend and selected sub-device need to be the same.

Due to not having permanent access to a system with two processors and OpenCL
installed, I did not have time to test out the solutions. Implementing the solutions
remains as an open issue at the time of the project.

54

6.8. Alexnet

6.8 Alexnet

For comparison how the backends and devices perform on a widely used network
for image classification that uses minibatches (with n = 10, w = 227, fin = 3) and
multiple OpenCL queues (q = 8), the Alexnet [1] included in the Caffe library was
also evaluated.

Device Backend Forward Backward Total Forward Speedup
Intel CPU 452.807 ms 355.553 ms 808.420 ms 1.00
Intel OpenCL 238.188 ms 152.811 ms 391.160 ms 1.90
AMD OpenCL 52.348 ms 128.009 ms 180.420 ms 8.65
nVidia OpenCL 26.055 ms 47.446 ms 73.540 ms 17.37
nVidia CUDA 20.899 ms 16.730 ms 37.718 ms 21.66

Table 6.10: Alexnet timings, average forward-backward pass over 50 iterations.

The CUDA backend has an advantage over the OpenCL backend in terms of speed,
but is less versatile. The AMD GPU seems to be less efficient with minibatches
and smaller matrix-matrix multiplications than the nVidia GPU, which is why the
AMD GPU performs worse than the nVidia GPU on the same backend. With the
SK-, USK- and U-Net (Section 6.5), the AMD GPU performs better using the same
(OpenCL) backend on both GPUs.

Especially the backward computation is much slower (by a factor of three) using
OpenCL instead of CUDA. The algorithms used are the same, therefore this differ-
ence is difficult to explain. Possibly, different optimizations need to be applied in
the backward step of convolution layers, which can have a sequential bottleneck
by adding up the gradients over the minibatch.

Using the OpenCL hybrid backend on the Intel CPU outperforms the (legacy) CPU
backend by almost a factor of two. The speedup comes from parallelization of
Greentea’s OpenCL compute kernels, which are only single-threaded in the Caffe
CPU backend. The BLAS library used for convolutions is multithreaded in both
cases.

55

Chapter 7

Results

7.1 Introduction

In this chapter, the results of training the models from Chapter 3 are presented.

The evaluation is based on:

• Two data sets (DS1 and DS2: see Chapter 2).

• Three models (SK, U, USK: see Chapter 3).

• Two training loss functions (Softmax and Malis).

• One processing loss function (Softmax).

• Three training configurations (Softmax, Malis and Softmax + Malis).

• 10’000 training iterations per configuration, respectively 20’000 for combined
training.

• Three error objectives (rand, warping and pixel error).

The amount of training iterations was chosen so that training of all 18 combina-
tions was feasible during one week on two AMD W9100 GPUs, providing a total
of 10 TFLOP/s [22].
The training data is not very large in both cases (see Chapter 2) and thus the loss al-
ways converged in under 10’000 iterations for each training method. It is possible
that some trainings did overfit as no early stopping was applied. Technically, the
networks did not get to see the same amount of examples during training even
though the iterations are the same, as the chosen output sizes of each network
were set differently. However, due to gradient accumulation, different learning
rates and weight initialization it is hard to estimate the effect of the amount of
labels seen. As all networks converged to a stable loss, it should negligible.

7.2 Analysis on DS1

7.2.1 Training

The training parameters used on DS1 were set to not use the error masking func-
tionality. Masking usually gives thicker membrane (background) labels when

56

7.2. Analysis on DS1

used with Softmax by balancing out the amount of background error against fore-
ground (cell interior) error.

Malis loss was run without using a patch prior for preferring training patches
based on their label histogram. Softmax loss on the other hand was used with the
patch prior enabled. This is justified by the different characters of the loss func-
tions: Softmax computes a per-pixel error while Malis gives errors at problematic
pixels only, which can be very concentrated on a few pixels (see Section 5.3.2).

In the patch pre-processing step, the images were enhanced with CLAHE (con-
trast limited adaptive histogram equalization) and normalized in the range of
[−1.0, 1.0].

To get more training data, the images were blurred with a randomly chosen 5 by
5 Gaussian kernel. The training patches were also rotated to multiples of 90◦ and
mirrored randomly (horizontal and vertical).

Details of the pre-processing and label priors are described in Chapter 4. The
exact training parameters are stored as prototxt configuration in the Caffe Neural
Models repository [9].

Interestingly, it was not possible to start training of the SK network with Malis loss
directly. The loss did not converge, and the output feature maps drifted to being
classified as only foreground or only background. Therefore, the weights of the
network in Malis only-training were initialized using 4000 iterations of Softmax
training first. This was the lowest number of iterations where the training con-
verged to a small loss afterwards. The other network architectures did not show
such a behavior and trained well when starting with Malis directly.
This is related to weight initialization as well as the fact that Malis works better on
bigger training patch sizes. Training of SK was limited to 128 by 128 pixels output,
which is much less context for Malis to work on than with USK and U with 512
by 512 and 388 by 388 pixels respectively.

7.2.2 Numerical

Rank Network Loss Function Rand Warping Pixel
1. USK Softmax + Malis 0.031251499 0.000423193 0.040650392
2. SK Softmax + Malis 0.043871103 0.000324726 0.052724789
3. USK Malis 0.045955948 0.000578165 0.058407081
4. U Softmax + Malis 0.050799468 0.000487328 0.044159558
5. SK Malis 0.063852001 0.000386953 0.055678171
6. USK Softmax 0.067068677 0.000418186 0.030634890
7. U Malis 0.078736573 0.000520945 0.059127919
8. U Softmax 0.091736036 0.000595331 0.033451667
9. SK Softmax 0.123334489 0.000549316 0.034416625

Table 7.1: DS1 error evaluation (lower is better).

57

7.2. Analysis on DS1

Explanations for the Tables 7.1 and 7.2:

• Rank: The internal ranking, as indicated by the rand error.

• Loss Function: Softmax indicates 10’000 iterations with the Softmax loss
function. Malis indicates 10’000 iterations with the Malis loss function. When
both are indicated, the training was executed with 10’000 Softmax and then
10’000 Malis training iterations.

• Rand, warping and pixel: Error metrics, as proposed by Jain et al. [27] and
used in the ISBI 2012 challenge [11]. A script for evaluation is available for
Fiji [13] in the Caffe Neural Models repository [9].

The ranking on data set DS1 is as expected: Taking the average rank, USK-Net
performs better than SK-Net, which is more precise than U-Net.
The same goes for training methods: Using Softmax + Malis minimizes the rand
error better than using Malis only, and Softmax outperforms Malis on pixel preci-
sion. On one hand, this is because the Malis criterion improves the rand error by
penalizing merge and split errors. On the other hand, training with Malis will also
decrease the pixel accuracy, which can be seen when inspecting the result visually.
As Softmax training initializes the networks better than Malis, the best training
method is to start with Softmax and then transit to Malis for fine tuning.
Obviously, the USK network architecture performed best on both pixel accuracy
and rand error. Only for the warping error, the much slower SK-Net (see Section
6.5) performs best.

7.2.3 Visual

The visual analysis is based on the image number 2 of the DS1 stack (see Section
2.1). It includes a glia cell (Figure 7.1, label A) which is considered as background.
The thickness of it makes it harder to label correctly, especially with Malis loss.

Figure 7.1: DS1 ssTEM raw and corresponding ground truth, 1024 by 1024 pixels
(Source: ssTEM [8], [9]).

58

7.2. Analysis on DS1

(a) SK network, Softmax. (b) U network, Softmax.

(c) USK network, Softmax. (d) SK network, Malis.

(e) U network, Malis. (f) USK network, Malis.

Figure 7.2: Visual comparison of all results in Table 7.1.

59

7.2. Analysis on DS1

(a) SK network, Softmax + Malis. (b) U network, Softmax + Malis.

(c) USK network, Softmax + Malis.

Figure 7.2: Visual comparison of all results in Table 7.1.

Explanation to the labels in Figure 7.2:

(A) Glia cell that should be considered background. Malis loss does focus on
separating foreground objects, so this part gets only labeled correctly in the
trainings that use Softmax only (a, b and c).

(B) Diffuse membrane with light texture, which is hard to separate from cell
interior. The separation is correct only in SK + Malis (d), while all other
configurations lead to connected cells, although all trainings with Malis (d
to i) show uncertainty, which could be sufficient to segment correctly. Diffuse
parts are always on the edge of being pushed to foreground or background,
which makes the segmentation fragile.

(C) Membrane with close proximity to a mitochondrion. Except for U networks
that have been trained with Softmax (b and h), this gets labeled correctly.
The downsampling of U-Net is sub-optimal here when pixel error (without

60

7.3. Analysis on DS2

scaling) instead of foreground separation is the training objective.

(D) Same case as label C, but here the mitochondrion is labeled with high cer-
tainty by all networks, leading to mislabeling of the nearby membrane.

(E) Removing an isolated mitochondrion with high certainty. The USK network
(c and i) performed best on this task. Malis trainings are usually worse,
again because Malis does not focus on pixel accuracy.

(F) Mitochondrion with long, thin structure. It consequently leads to a wrong
classification as membrane because of its shape. This is not an issue, as
isolated misclassifications within a cell can be rejected on a higher level when
reconstructing the connectome.

(G) Mitochondrion close to the image border. As the training and classification
uses border mirroring to make up for the missing context, it can lead to more
errors near the border, independent of the network architecture.

(H) Same case as label G. Softmax + Malis on USK-Net performed best on re-
moving the mitochondria on E, F, G and H.

(I) Diffuse membrane with a dark texture. It is expected that this gets com-
pletely classified as membrane. However, this was not the case on all net-
works and trainings. The worst case applies on U-Net (b and h), where the
cells are almost connected.

As expected, membranes get labeled thinner with Malis as this error criterion
is stopping to provide loss at membranes as soon as two cells are sufficiently
separated (see Section 5.3.2). Even though the separation border is thin, training
with Malis separates cells very well and scores best on both DS1 (Table 7.1) and
DS2 (Table 7.2).

The visual results match the numerical evaluation. USK performs best on pixel
error with Softmax and best on rand error with Softmax + Malis. However, when
using Softmax, there is not a huge difference in pixel error and visual results
between the networks. Malis does not work very well on SK networks (d), leaving
a lot of uncertainty in the prediction. It can still be a good segmentation, as
thresholding of gray scale values can be applied. The numeric evaluation [13]
does test different thresholds, which is why the score is rather good (see Table 7.1)
despite the uncertainty.

7.3 Analysis on DS2

7.3.1 Training

Training on DS2 was similar to training on DS1. The main difference is that the
patch prior was not used on both Softmax and Malis. Instead, the error masking
was enabled when using Softmax, which gives thicker borders. This is motivated
by having input images which are slightly more blurred and thus the cell mem-
branes are less sharp and harder to distinguish from cell interior.

Here, the SK network already converged using 2000 training iterations of Softmax
before switching over to Malis. Starting with Malis directly was also not possible.

61

7.3. Analysis on DS2

7.3.2 Numerical

Rank Network Loss Function Rand Warping Pixel
1. SK Softmax + Malis 0.060110507 0.000495529 0.106053779
2. USK Malis 0.085927407 0.000848007 0.110390552
3. SK Malis 0.086975487 0.000572968 0.107365432
4. SK Softmax 0.087380844 0.000585556 0.075981492
5. U Softmax + Malis 0.097356122 0.000940704 0.101856259
6. USK Softmax 0.102450251 0.000851440 0.073163943
7. U Malis 0.121984927 0.001038742 0.111951817
8. USK Softmax + Malis 0.128440534 0.000858688 0.101919859
9. U Softmax 0.148045042 0.001293564 0.083922396

Table 7.2: DS2 error evaluation (lower is better).

Interestingly, the USK-Net with Softmax + Malis loss training performs unexpec-
tedly worse on the dataset DS2 than on DS1, where it performed best. What is
common for both DS1 and DS2 is that the USK network combined with Softmax
training performs best on the pixel error. Overall, this data set has a ranking
much harder to explain than on DS1. Visual inspection reveals that the USK-Net
was often overconfident when labeling the cell interior, which connected cells that
should be separated. On the DS1 data set, this did not happen.

Network Rand Warping Pixel
U 0.0382 0.000353 0.0611

Table 7.3: (Source: Ronneberger et al. [2]).

Finally, the results of U-Net obtained by Ronneberger et al. [2] (Table 7.3) could
not be reached, probably due to having used less transformations to extend the
training data. It is not inherently clear if the U network would perform better than
SK and USK given the bigger training data set.

Ideas to improve training include:

• Weight maps to scale the loss instead of only masking it.

• Add elastic deformations, shifting and scaling instead of only rotation and
mirroring to increase the amount of training data.

• Experiment with different loss functions than Malis and Softmax, or altern-
ate between them during training.

7.3.3 Visual

The visual analysis is based on the image number 16 of the DS2 test stack (see
Section 2.2).

62

7.3. Analysis on DS2

Figure 7.3: DS1 raw image, 512 by 512 pixels (Source: ISBI challenge [11], [9]).

Explanation to the labels in Figure 7.2:

The visual results of Softmax training (a to c) have thicker membrane labels than
on DS1. This is because the error masking was enabled here and, as a result,
the network has seen the same amount of error pixels for both foreground and
background.

(A) A bright spot, which is an error in the electron microscopy image. The
membrane affected by it is misclassified by all networks and trainings. The
local contrast enhancement with CLAHE did not help here.

(B) Mitochondrion with close proximity parallel to a cell membrane. The USK
network removes the membrane with all trainings (c, f and i). U-Net (b,
e and h) performs a little better, but still merges the two cells. Only the
SK network does it correctly (a, d and g), but has some uncertainty on the
mitochondrion instead (d).

(C) Diffuse section of a cell membrane. This is not an issue on most training/ar-
chitecture combinations, except for U-Net with Softmax (b and h).

(D) Oriented structures, even when faint, are partially labeled as membrane
when sharp enough and of similar thickness as the membrane. This is no
issue when isolated within the cell and not cutting through a cell that should
be connected. With convolutional networks, this is hard to impossible to la-
bel correctly. It would require more high level knowledge of the object, such
as if the predicted membrane is enclosing a cell or not.

63

7.3. Analysis on DS2

(a) SK network, Softmax. (b) U network, Softmax.

(c) USK network, Softmax. (d) SK network, Malis.

(e) U network, Malis. (f) USK network, Malis.

Figure 7.4: Visual comparison of all results in Table 7.2.

64

7.3. Analysis on DS2

(a) SK network, Softmax + Malis. (b) U network, Softmax + Malis.

(c) USK network, Softmax + Malis.

Figure 7.4: Visual comparison of all results in Table 7.2.

(E) Diffuse mitochondrion. The same situation as with B applies. Especially U-
and USK-Net with Softmax training (b and c) get it wrong.

(F) Diffuse cell interior that is similar to the membrane texture. All networks
see a membrane connection through this area. In the training data there are
some examples of diffuse membranes, so the networks have slightly overfit-
ted on the training data for this case.

65

Chapter 8

Conclusion

8.1 Research Time Line

An overview of the research time line, in order to give a context on what shaped
the objectives and decisions made during the project:

From To Activity / Event
05.11.2014 05.11.2014 Collaboration request at UZH INI.
09.11.2014 22.01.2014 Discussing ideas with Dr. Jan Funke.
14.12.2014 14.12.2014 Hongsheng Li et al. paper released (SK kernels) [7].
07.02.2015 07.02.2015 Research proposal finished and accepted.
23.02.2015 23.02.2015 Research beginning.
26.02.2015 06.03.2015 Getting the sliding window network to work [10].
08.03.2015 18.04.2015 OpenCL backend development [5].
10.04.2015 21.04.2015 Discussing the project with AMD [25].
22.04.2015 22.04.2015 Arrival of AMD’s W9100 GPUs (hardware sponsoring).
19.04.2015 19.04.2015 Pull request of the modified Caffe to BVLC [4].
09.05.2015 09.05.2015 Public release of the Caffe Neural Models [9].
09.05.2015 09.05.2015 Public release of the Caffe Neural Tool [16].
15.05.2015 15.05.2015 Ronneberger et al. paper released (U-Net) [2].
20.05.2015 25.06.2015 Testing of U-Net and design of USK-Net.
27.06.2015 12.07.2015 Collaboration at HHMI Janelia, Virginia, USA [28].
29.06.2015 14.07.2015 Implementing Malis loss and N-D SK kernels for Caffe.
12.07.2015 15.07.2015 Critical source code development finished.
13.07.2015 20.08.2015 Writing the report and final evaluation experiments.
24.08.2015 - Post-research support of Project Greentea and ongoing

development in collaboration with AMD,
HHMI Janelia and the Caffe community.

66

8.2. Implications

8.2 Implications

The first idea for the research project was to implement strided kernels. How-
ever, with the release of the Hongsheng Li et al. [7] paper, the problem already
got solved. We got their source code and I was able to translate existing sliding
window networks to strided kernel networks.
These events lead to a shift of focus to implement the OpenCL backend and sup-
port a variety of hardware. This was important to see how existing CPU clusters
and AMD GPUs could be used instead of only nVidia GPUs.

A nice side effect of completely re-writing the whole Caffe library to OpenCL
was gaining a complete understanding of the library, the bottlenecks, how all
layers work and what the most important objectives for optimizations and network
design are.

It turned out that running networks across devices does not give an advantage
in the case of SK, U and USK architectures, as perfect scaling is possible when
running independent instances of the network on each device. This only requires
from the devices to have enough memory to hold the networks. This assumption
was met when AMD’s W9100 GPUs became available to me.

SK networks did not scale as desired and up to 100’000 pixel classifications per
second were only about 1/10th of the desired speed. The original ideas to speed
up the layers of the SK network by using methods such as multi device execution,
Fourier transform convolutions or direct convolutions did not work.
With the release of the Ronneberger et al. paper [2], the research focus was shifted
to analyzing the U-Net approach, which is able to classify up to one megapixel
per second.
Training of U-Net was more difficult than SK-Net and thus I tried to implement
my own network architecture based on the findings of SK-Net and U-Net, which
resulted in the experimental USK-Net. The USK-Net performs similarly to U-Net
and produced better results with small training data sets (see Chapter 7).

Looking at ISBI 2012 results [11] and their test metrics, as well as the fact that one
of the authors of the Malis criterion [3], Dr. Srinivas Turaga, was at HHMI Janelia
for collaboration, lead to the development of an additional loss layer for Caffe (see
Section 5.3.2).

Finally, the last feature implemented before freezing the source code was N di-
mensional strided kernel support for max pooling and convolution layers, as this
was a feature requested by Dr. Stephan Saalfeld and Dr. Srinivas Turaga at HHMI
Janelia. This can be used to run modified SK, U and USK network architectures
on 3D blocks of volumetric-isotropic data sets, or even 3D over time (4D).

8.3 Difficulties Encountered

The obvious difficulty was to keep up with the general research in pixelwise clas-
sification of images, as important papers [7], [2] were released during the project
research. A shift of focus from the original plans were required a few times. This
includes taking into account new results and dropping planned approaches.

67

8.4. Reproducibility of Results

It was also a lot of work to keep up with the changes of the Caffe library [4], as they
changed many core aspects such as network file format and shape specifications
for memory blobs. This broke compability with existing code from Honghsheng
Li et al.’s approach [7] as well as the existing sliding window network [10], [9].
Constantly pulling new changes from the BVLC master branch [6] and adapting
my own branch to those changes was necessary. The benefit gained by doing this
is that backwards compatibility to the official version is always guaranteed and
that my own branch was ahead during the whole scope of the project.

With programming the Caffe Neural Tool, the diversity of formats for labels and
input data was complex to handle. Especially loading and storing TIF pictures
that can have a variety of pixel formats and support stacking multiple images in a
single file can be tricky.

At last, it was not always obvious why a network does learn the expected features
or not. Training parameter tests require up to ten hours of training on a GPU,
which is very acceptable during production, but rather cumbersome during de-
bugging. Evaluation and training of the networks for numeric results was only
possible after freezing critical parts of the source code (computation kernels and
layer implementations), because the results can differ after fixing bugs and other
changes of the library. This resulted in having only two weeks left for this stage.

8.4 Reproducibility of Results

The results obtained in this report are guaranteed to be reproducible by the use of
the following software pipeline, using CUDA or OpenCL hardware equivalent to
the hardware used in this report.

Repositories belonging to Project Greentea:

• Caffe [5]

URL: https://github.com/naibaf7/caffe

Commit checksum: f84c2a4fb8d633bc7d8fc9771eb06a3cf2215212

• Caffe Neural Tool [16]

URL: https://github.com/naibaf7/caffe_neural_tool

Commit checksum: 780e7dd72e4f88c80729e2b33d6c0137d479016a

• Caffe Neural Models [9]

URL: https://github.com/naibaf7/caffe_neural_models

Commit checksum: dbb06d8352aa9c2ba99458cb9e9068500ebacc11

As long as the ISBI 2012 challenge is ongoing, the data set DS2 results can be
reproduced on their website [11]. The training and test data for the data set DS1
remains included in the Caffe Neural Models repository.

68

https://github.com/naibaf7/caffe
https://github.com/naibaf7/caffe_neural_tool
https://github.com/naibaf7/caffe_neural_models

8.5. Outlook

8.5 Outlook

In this outlook I give a brief introduction on future plans for the improved Caffe
version [5], extended use cases for the models [9], missing features for the Caffe
Neural Tool [16] and ideas that did not fit into the time scope of the project.

8.5.1 Device Abstracted Backend

Currently, the OpenCL, CUDA and (legacy) CPU backend are implemented side-
by-side and there is quite some code duplication in the Caffe library. To support
future multi-device training methods and remove redundancy, the backend should
be further unified so that the only remaining code duplication resides with the
actual compute kernels used inside the layers. This will minimize bugs that occur
on only one backend and make software verification much easier to handle. It will
also shorten the time required for newly developed layers to become available on
all devices.
At the time of the project, the improved Caffe library [5] drops full support on the
legacy CPU backend in favor of an OpenCL hybrid solution (see Section 5.4.2) on
CPUs. Some tuning to work correctly on NUMA processors (see Section 6.7) is
still required. The CPU backend remains as a fallback for layers that do not work
on OpenCL and CUDA, such as the Malis loss criterion (see Section 5.3.2).

8.5.2 Improving Training Data

As a first step to improve results, all network architectures should be evaluated
using more training data, acquired artificially or from more ground truth.
It is advisable to try out all models on a given data set, as there is no clear winner
among the networks. Results may vary strongly as the numerical analysis revealed
(see Section 7.2 versus 7.3).

8.5.3 Parameter Grid Search

The network architectures presented here are only examples of a whole class of
possible networks. Many parameters such as kernel sizes and how SK networks
are combined with U type networks can be evaluated. Especially deep multi-path
networks can be useful, merging the feature maps of different architectures before
making the ouput label predictions. The new USK architecture is such an example.

8.5.4 Testing of Volumetric Architectures

Depending on the data set, SK, U and USK networks can be configured in many
more ways for 3D than for 2D. For example, the depth direction is likely to have
less physical resolution than the width and height dimension, due to how the data
is acquired with slicing and electron microscopy. This should be considered when
choosing the kernel size , kernel stride and span of the depth dimension. An
example is the ISBI 2012 dataset which spans 2 x 2 x 1.5 microns with a resolution
of 4 by 4 by 50 nm/pixel [14], [11], [15].

69

8.6. Final Words

8.5.5 Improving Test Metrics

Visual inspection and the error metrics used in this report can only give informa-
tion about how accurate the label predictions are compared to the ground truth.
For connectomics, this may not be the most important objective. The tools which
will further process the segmentations may be able to correct certain errors in the
predictions by testing how likely the final result is, while other merge and split
errors lead to uncorrectable errors. This is an objective that could be more useful
when selecting the network architecture, loss function and training method.

8.6 Final Words

This research project combines many disciplines, such as high performance com-
puting, machine learning, visual computing and a bit of connectomics. I was able
to implement most of the originally planned features and found replacements for
ideas that turned out to work badly. Finally, the results of the research include
a useful, versatile stack of Open Source software (Project Greentea) that can be ex-
tended in the future. During working on the project, it was already possible to
establish a growing user base [29]. The models and tools introduced with this pro-
ject can be used efficiently on a large variety of data sets and hardware, making
it very flexible. The collaboration at HHMI Janelia was also a great experience.
Hardware sponsoring by AMD shows that programming of the Project Greentea
and efficient machine learning libraries in general is of high interest also for hard-
ware manufacturers.

70

Appendix A

Network Architectures

71

A.1. SK-Net

A.1 SK-Net

(0,1)

pool2 (MAX PoolingSK) kernel size: 2 stride: 1 pad: 0 kstride: 2

pool2

conv2 (ConvolutionSK) kernel size: 5 stride: 1 pad: 0 kstride: 2

conv2

128

data

conv1 (ConvolutionSK) kernel size: 7 stride: 1 pad: 0 kstride: 1

conv3 (ConvolutionSK) kernel size: 3 stride: 1 pad: 0 kstride: 4

label (MemoryData)

label

labeli

pool1

relu2 (ReLU)

pool1 (MAX PoolingSK) kernel size: 2 stride: 1 pad: 0 kstride: 1 relu1 (ReLU)

conv1

conv3

data (MemoryData)

datai

silence (Silence)

48

192

72

A.1. SK-Net

(0,0)

ip1 (ConvolutionSK) kernel size: 10 stride: 1 pad: 0 kstride: 8

ip1

1024

prob_affinity

loss (MalisLoss)

prob (Softmax)

prob

ip2 (ConvolutionSK) kernel size: 1 stride: 1 pad: 0 kstride: 1 relu4 (ReLU)

component

ip2

relu5 (ReLU)ip3 (ConvolutionSK) kernel size: 1 stride: 1 pad: 0 kstride: 1

label_b

components (ConnectedComponent)affinity (Affinity)

label_affinity

512

pool3

relu3 (ReLU)pool3 (MAX PoolingSK) kernel size: 2 stride: 1 pad: 0 kstride: 4

split (Split)

label_a

ip3

2

73

A.2. U-Net

A.2 U-Net

(0,5)

pool1

conv3
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

label
(MemoryData)

labeli

label

conv1
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

conv1

64

relu2
(ReLU)

conv2

data
(MemoryData)

data datai

relu1
(ReLU)

conv2
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

silence
(Silence)

pool1
(MAX Pooling)

kernel size: 2
stride: 2
pad: 0

kstride: 1

conv3

128

conv4
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

relu3
(ReLU)

64

74

A.2. U-Net

(0,4)

pool2

conv5
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

relu7
(ReLU)

conv7

conv6

pool3
(MAX Pooling)

kernel size: 2
stride: 2
pad: 0

kstride: 1

relu6
(ReLU)

pool3

conv8
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

512

conv5

256

pool2
(MAX Pooling)

kernel size: 2
stride: 2
pad: 0

kstride: 1

conv6
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

256

conv7
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

512

conv4

128

relu4
(ReLU)

relu5
(ReLU)

75

A.2. U-Net

(0,3)

conv9
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

conv9

1024

pool4
(MAX Pooling)

kernel size: 2
stride: 2
pad: 0

kstride: 1

pool4

mergecrop1

conv12
(Convolution)
kernel size: 3

stride: 1
pad: 0

upconv1

conv11
(Convolution)
kernel size: 1

stride: 1
pad: 0

kstride: 1

mergecrop1
(MergeCrop)

conv10

relu10
(ReLU)

upconv1
(Deconvolution)

conv10
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

1024

conv8

512

relu9
(ReLU)

relu8
(ReLU)

conv11

512

76

A.2. U-Net

(0,2)

relu13
(ReLU)

conv15

pad: 0
kstride: 1

upconv2

conv14
(Convolution)
kernel size: 1

stride: 1
pad: 0

kstride: 1

conv12

relu11
(ReLU)

conv13
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

mergecrop2

conv15
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

512

conv13

relu12
(ReLU)

upconv2
(Deconvolution)

conv16

mergecrop2
(MergeCrop)

conv16
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

256

512

256

conv14

256

77

A.2. U-Net

(0,1)

conv17
(Convolution)
kernel size: 1

stride: 1
pad: 0

kstride: 1

conv17

128

conv19
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

conv19

128

relu14
(ReLU)

mergecrop3
(MergeCrop)

upconv4
(Deconvolution)

relu16
(ReLU)

upconv4

upconv3
(Deconvolution)

conv20
(Convolution)
kernel size: 1

stride: 1
pad: 0

kstride: 1

conv20

64

conv18

relu15
(ReLU)

mergecrop3

conv18
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

upconv3

128

78

A.2. U-Net

(0,0)

split
(Split)

label_blabel_a

conv21

conv22
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

relu17
(ReLU)

conv22

ip1
(Convolution)
kernel size: 1

stride: 1
pad: 0

kstride: 1

relu18
(ReLU)

label_affinity

loss
(MalisLoss)

affinity
(Affinity)

prob_affinity

ip1

prob
(Softmax)

64

components
(ConnectedComponent)

prob

component

2

conv21
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

64

mergecrop4

mergecrop4
(MergeCrop)

79

A.3. USK-Net

A.3 USK-Net

(0,4)

data

conv1
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

conv1

64

relu2
(ReLU)

conv2

relu1
(ReLU)

data
(MemoryData)

conv2
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

pool1
(MAX Pooling)

kernel size: 2
stride: 2
pad: 0

kstride: 1

64

80

A.3. USK-Net

(0,3)

pool2
(MAX PoolingSK)

kernel size: 2
stride: 1
pad: 0

kstride: 1

pool2

conv4

relu4
(ReLU)

pool3
(MAX PoolingSK)

kernel size: 2
stride: 1
pad: 0

kstride: 2

conv4
(ConvolutionSK)

kernel size: 4
stride: 1
pad: 0

kstride: 2

pool1

conv3
(ConvolutionSK)

kernel size: 6
stride: 1
pad: 0

kstride: 1

conv3

relu3
(ReLU)

128

128

81

A.3. USK-Net

(0,2)

ip1
(ConvolutionSK)

kernel size: 8
stride: 1
pad: 0

kstride: 8

ip1

512

conv5
(ConvolutionSK)

kernel size: 4
stride: 1
pad: 0

kstride: 4

conv5

128

relu5
(ReLU)

ip2
(Convolution)
kernel size: 1

stride: 1
pad: 0

kstride: 1

256

pool4

pool3

pool4
(MAX PoolingSK)

kernel size: 2
stride: 1
pad: 0

kstride: 4

relu6
(ReLU)

82

A.3. USK-Net

(0,1) relu8
(ReLU)

conv7

ip2

upconv1
(Deconvolution)

relu7
(ReLU)

mergecrop1

conv7
(Convolution)
kernel size: 3

stride: 1
pad: 0

kstride: 1

conv6

mergecrop1
(MergeCrop)

upconv1

conv6
(Convolution)
kernel size: 1

stride: 1
pad: 0

kstride: 1

128

conv8
(Convolution)
kernel size: 3

stride: 1

128

83

A.3. USK-Net

(0,0)

(ReLU)

prob_affinity

loss
(MalisLoss)

prob

affinity
(Affinity)

label
(MemoryData)

label labeli

component

prob
(Softmax)

label_b

components
(ConnectedComponent)

label_affinity

ip3
(Convolution)
kernel size: 1

stride: 1
pad: 0

kstride: 1

ip3

2

stride: 1
pad: 0

kstride: 1

conv8

64

split
(Split)

label_a

relu9
(ReLU)

datai

silence
(Silence)

84

References

[1] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira et al. Curran Associ-
ates, Inc., 2012, pp. 1097–1105. url: http : / / papers . nips . cc / paper /

4824- imagenet- classification- with- deep- convolutional- neural-

networks.pdf.

[2] O. Ronneberger, P. Fischer and T. Brox. “U-Net: Convolutional Networks for
Biomedical Image Segmentation”. In: ArXiv e-prints (May 2015). arXiv:1505.
04597 [cs.CV].

[3] S. C. Turaga et al. “Maximin affinity learning of image segmentation”. In:
ArXiv e-prints (Nov. 2009). arXiv:0911.5372 [cs.CV].

[4] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature Em-
bedding”. In: arXiv preprint arXiv:1408.5093 (2014).

[5] Fabian Tschopp. Caffe Improved. url: https://github.com/naibaf7/caffe
(visited on 20th Aug. 2015).

[6] BVLC Caffe. url: https://github.com/BVLC/caffe (visited on 20th Aug.
2015).

[7] H. Li, R. Zhao and X. Wang. “Highly Efficient Forward and Backward Propaga-
tion of Convolutional Neural Networks for Pixelwise Classification”. In:
ArXiv e-prints (Dec. 2014). arXiv:1412.4526 [cs.CV].

[8] Stephan Gerhard et al. Segmented anisotropic ssTEM dataset of neural tissue.
2013. url: http://dx.doi.org/10.6084/m9.figshare.856713 (visited on
20th Aug. 2015).

[9] Fabian Tschopp and Julien Martel. Caffe Neural Models. url: https://github.
com/naibaf7/caffe_neural_models (visited on 20th Aug. 2015).

[10] Julien Martel. Sliding Window Network. url: https://www.ini.uzh.ch/
people/jmartel (visited on 20th Aug. 2015).

[11] ISBI 2012 Challenge. url: http://brainiac2.mit.edu/isbi_challenge/
(visited on 20th Aug. 2015).

[12] Jeff Donahue. Caffe ND convolutions. url: https : / / github . com / BVLC /

caffe/pull/2049 (visited on 20th Aug. 2015).

85

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/0911.5372
https://github.com/naibaf7/caffe
https://github.com/BVLC/caffe
http://arxiv.org/abs/1412.4526
http://dx.doi.org/10.6084/m9.figshare.856713
https://github.com/naibaf7/caffe_neural_models
https://github.com/naibaf7/caffe_neural_models
https://www.ini.uzh.ch/people/jmartel
https://www.ini.uzh.ch/people/jmartel
http://brainiac2.mit.edu/isbi_challenge/
https://github.com/BVLC/caffe/pull/2049
https://github.com/BVLC/caffe/pull/2049

A.3. USK-Net

[13] Segmentation Evaluation Metrics. url: http : / / fiji . sc / Segmentation _

evaluation_metrics_-_Script (visited on 20th Aug. 2015).

[14] TrackEM. 2012. url: https://www.ini.uzh.ch/~acardona/trakem2.html
(visited on 20th Aug. 2015).

[15] Albert Cardona et al. “An Integrated Micro- and Macroarchitectural Ana-
lysis of the Drosophila Brain by Computer-Assisted Serial Section Electron
Microscopy”. In: PLoS Biology 8.10 (Oct. 2010). Ed. by Kristen M. Harris,
e1000502. doi: 10.1371/journal.pbio.1000502. url: http://dx.doi.org/
10.1371/journal.pbio.1000502.

[16] Fabian Tschopp. Caffe Neural Tool. url: https://github.com/naibaf7/
caffe_neural_tool (visited on 20th Aug. 2015).

[17] Srinivas Turaga. Malis criterion for Matlab. url: https : / / github . com /

srinituraga/malis/ (visited on 20th Aug. 2015).

[18] Srinivas Turaga. Malis criterion for Torch. url: https://github.com/srinituraga/
lua---imgraph/ (visited on 20th Aug. 2015).

[19] K. Rupp, F. Rudolf and J. Weinbub. “ViennaCL - A High Level Linear Al-
gebra Library for GPUs and Multi-Core CPUs”. In: Intl. Workshop on GPUs
and Scientific Applications. 2010, pp. 51–56.

[20] S. Chetlur et al. “cuDNN: Efficient Primitives for Deep Learning”. In: ArXiv
e-prints (Oct. 2014). arXiv:1410.0759.

[21] Nicolas Vasilache et al. Fast Convolutional Nets With fbfft: A GPU Performance
Evaluation. 2014. eprint: arXiv:1412.7580.

[22] AMD W9100 Whitepaper. url: http://www.amd.com/Documents/FirePro_
W9100_Data_Sheet.pdf (visited on 20th Aug. 2015).

[23] nVidia GTX 980 Whitepaper. url: http://international.download.nvidia.
com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_

FINAL.PDF (visited on 20th Aug. 2015).

[24] Intel ARK database. url: http://ark.intel.com/ (visited on 20th Aug. 2015).

[25] AMD. url: http://www.amd.com/ (visited on 20th Aug. 2015).

[26] OpenCL Device Fission. url: https://www.khronos.org/registry/cl/
extensions/ext/cl_ext_device_fission.txt (visited on 20th Aug. 2015).

[27] Viren Jain et al. “Boundary Learning by Optimization with Topological Con-
straints”. In: 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. Institute of Electrical & Electronics Engineers (IEEE),
June 2010. doi: 10.1109/cvpr.2010.5539950. url: http://dx.doi.org/10.
1109/CVPR.2010.5539950.

[28] HHMI Janelia. url: https://www.janelia.org/ (visited on 20th Aug. 2015).

[29] Fabian Tschopp. Caffe Pull Request. url: https://github.com/BVLC/caffe/
pull/2610 (visited on 20th Aug. 2015).

86

http://fiji.sc/Segmentation_evaluation_metrics_-_Script
http://fiji.sc/Segmentation_evaluation_metrics_-_Script
https://www.ini.uzh.ch/~acardona/trakem2.html
http://dx.doi.org/10.1371/journal.pbio.1000502
http://dx.doi.org/10.1371/journal.pbio.1000502
http://dx.doi.org/10.1371/journal.pbio.1000502
https://github.com/naibaf7/caffe_neural_tool
https://github.com/naibaf7/caffe_neural_tool
https://github.com/srinituraga/malis/
https://github.com/srinituraga/malis/
https://github.com/srinituraga/lua---imgraph/
https://github.com/srinituraga/lua---imgraph/
http://arxiv.org/abs/1410.0759
arXiv:1412.7580
http://www.amd.com/Documents/FirePro_W9100_Data_Sheet.pdf
http://www.amd.com/Documents/FirePro_W9100_Data_Sheet.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://ark.intel.com/
http://www.amd.com/
https://www.khronos.org/registry/cl/extensions/ext/cl_ext_device_fission.txt
https://www.khronos.org/registry/cl/extensions/ext/cl_ext_device_fission.txt
http://dx.doi.org/10.1109/cvpr.2010.5539950
http://dx.doi.org/10.1109/CVPR.2010.5539950
http://dx.doi.org/10.1109/CVPR.2010.5539950
https://www.janelia.org/
https://github.com/BVLC/caffe/pull/2610
https://github.com/BVLC/caffe/pull/2610

	Contents
	1 Introduction
	1.1 Convolutional Neural Networks
	1.2 Caffe Library
	1.3 Pixelwise Classification
	1.4 Existing Work
	1.5 New Contributions
	1.6 Terminology

	2 Datasets
	2.1 DS1 - Segmented anisotropic ssTEM dataset of neural tissue
	2.2 DS2 - ISBI 2012 dataset of neural tissue

	3 Models
	3.1 Introduction
	3.2 Sliding Window (SW-Net)
	3.3 SK-Net
	3.3.1 Converting SW Networks to SK
	3.3.2 SK Network

	3.4 U-Net
	3.5 USK-Net

	4 Caffe Neural Tool
	4.1 Functionality
	4.2 Preprocessing
	4.3 Histogram Equalization

	5 Caffe Library
	5.1 Introduction
	5.2 Modified Layers
	5.2.1 SK Layers
	5.2.2 N-Dimensional Layers

	5.3 New Layers
	5.3.1 Merge Crop
	5.3.2 Malis Loss
	5.3.3 Affinity
	5.3.4 Connected Components

	5.4 OpenCL Backend
	5.4.1 Implementation
	5.4.2 OpenCL Hybrid

	5.5 Convolution Methods

	6 Benchmarks
	6.1 Introduction
	6.2 Hardware
	6.3 Software
	6.4 Device Memory
	6.5 Labeling Throughput
	6.6 Layer Performance Analysis
	6.6.1 SK-Net
	6.6.2 U-Net
	6.6.3 USK-Net

	6.7 NUMA Issues
	6.8 Alexnet

	7 Results
	7.1 Introduction
	7.2 Analysis on DS1
	7.2.1 Training
	7.2.2 Numerical
	7.2.3 Visual

	7.3 Analysis on DS2
	7.3.1 Training
	7.3.2 Numerical
	7.3.3 Visual

	8 Conclusion
	8.1 Research Time Line
	8.2 Implications
	8.3 Difficulties Encountered
	8.4 Reproducibility of Results
	8.5 Outlook
	8.5.1 Device Abstracted Backend
	8.5.2 Improving Training Data
	8.5.3 Parameter Grid Search
	8.5.4 Testing of Volumetric Architectures
	8.5.5 Improving Test Metrics

	8.6 Final Words

	A Network Architectures
	A.1 SK-Net
	A.2 U-Net
	A.3 USK-Net

